51,735 research outputs found

    When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks

    Full text link
    Discovering and exploiting the causality in deep neural networks (DNNs) are crucial challenges for understanding and reasoning causal effects (CE) on an explainable visual model. "Intervention" has been widely used for recognizing a causal relation ontologically. In this paper, we propose a causal inference framework for visual reasoning via do-calculus. To study the intervention effects on pixel-level features for causal reasoning, we introduce pixel-wise masking and adversarial perturbation. In our framework, CE is calculated using features in a latent space and perturbed prediction from a DNN-based model. We further provide the first look into the characteristics of discovered CE of adversarially perturbed images generated by gradient-based methods \footnote{~~https://github.com/jjaacckkyy63/Causal-Intervention-AE-wAdvImg}. Experimental results show that CE is a competitive and robust index for understanding DNNs when compared with conventional methods such as class-activation mappings (CAMs) on the Chest X-Ray-14 dataset for human-interpretable feature(s) (e.g., symptom) reasoning. Moreover, CE holds promises for detecting adversarial examples as it possesses distinct characteristics in the presence of adversarial perturbations.Comment: Noted our camera-ready version has changed the title. "When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks" as the v3 official paper title in IEEE Proceeding. Please use it in your formal reference. Accepted at IEEE ICIP 2019. Pytorch code has released on https://github.com/jjaacckkyy63/Causal-Intervention-AE-wAdvIm

    The Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects

    Full text link
    Understanding the behavior of stochastic gradient descent (SGD) in the context of deep neural networks has raised lots of concerns recently. Along this line, we study a general form of gradient based optimization dynamics with unbiased noise, which unifies SGD and standard Langevin dynamics. Through investigating this general optimization dynamics, we analyze the behavior of SGD on escaping from minima and its regularization effects. A novel indicator is derived to characterize the efficiency of escaping from minima through measuring the alignment of noise covariance and the curvature of loss function. Based on this indicator, two conditions are established to show which type of noise structure is superior to isotropic noise in term of escaping efficiency. We further show that the anisotropic noise in SGD satisfies the two conditions, and thus helps to escape from sharp and poor minima effectively, towards more stable and flat minima that typically generalize well. We systematically design various experiments to verify the benefits of the anisotropic noise, compared with full gradient descent plus isotropic diffusion (i.e. Langevin dynamics).Comment: ICML 2019 camera read
    corecore