31 research outputs found

    MakerFluidics: low cost microfluidics for synthetic biology

    Full text link
    Recent advancements in multilayer, multicellular, genetic logic circuits often rely on manual intervention throughout the computation cycle and orthogonal signals for each chemical “wire”. These constraints can prevent genetic circuits from scaling. Microfluidic devices can be used to mitigate these constraints. However, continuous-flow microfluidics are largely designed through artisanal processes involving hand-drawing features and accomplishing design rule checks visually: processes that are also inextensible. Additionally, continuous-flow microfluidic routing is only a consideration during chip design and, once built, the routing structure becomes “frozen in silicon,” or for many microfluidic chips “frozen in polydimethylsiloxane (PDMS)”; any changes to fluid routing often require an entirely new device and control infrastructure. The cost of fabricating and controlling a new device is high in terms of time and money; attempts to reduce one cost measure are, generally, paid through increases in the other. This work has three main thrusts: to create a microfluidic fabrication framework, called MakerFluidics, that lowers the barrier to entry for designing and fabricating microfluidics in a manner amenable to automation; to prove this methodology can design, fabricate, and control complex and novel microfluidic devices; and to demonstrate the methodology can be used to solve biologically-relevant problems. Utilizing accessible technologies, rapid prototyping, and scalable design practices, the MakerFluidics framework has demonstrated its ability to design, fabricate and control novel, complex and scalable microfludic devices. This was proven through the development of a reconfigurable, continuous-flow routing fabric driven by a modular, scalable primitive called a transposer. In addition to creating complex microfluidic networks, MakerFluidics was deployed in support of cutting-edge, application-focused research at the Charles Stark Draper Laboratory. Informed by a design of experiments approach using the parametric rapid prototyping capabilities made possible by MakerFluidics, a plastic blood--bacteria separation device was optimized, demonstrating that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82% for equivalent separation performance when compared to the state of the art. Ultimately, MakerFluidics demonstrated the ability to design, fabricate, and control complex and practical microfluidic devices while lowering the barrier to entry to continuous-flow microfluidics, thus democratizing cutting edge technology beyond a handful of well-resourced and specialized labs

    Usability and Applicability of Microfluidic Cell Culture Systems

    Get PDF

    A Customer Programmable Microfluidic System

    Get PDF
    Microfluidics is both a science and a technology offering great and perhaps even revolutionary capabilities to impact the society in the future. However, due to the scaling effects there are unknown phenomena and technology barriers about fluidics in microchannel, material properties in microscale and interactions with fluids are still missing. A systematic investigation has been performed aiming to develop A Customer Programmable Microfluidic System . This innovative Polydimethylsiloxane (PDMS)-based microfluidic system provides a bio-compatible platform for bio-analysis systems such as Lab-on-a-chip, micro-total-analysis system and biosensors as well as the applications such as micromirrors. The system consists of an array of microfluidic devices and each device containing a multilayer microvalve. The microvalve uses a thermal pneumatic actuation method to switch and/or control the fluid flow in the integrated microchannels. It provides a means to isolate samples of interest and channel them from one location of the system to another based on needs of realizing the customers\u27 desired functions. Along with the fluid flow control properties, the system was developed and tested as an array of micromirrors. An aluminum layer is embedded into the PDMS membrane. The metal was patterned as a network to increase the reflectivity of the membrane, which inherits the deformation of the membrane as a mirror. The deformable mirror is a key element in the adaptive optics. The proposed system utilizes the extraordinary flexibility of PDMS and the addressable control to manipulate the phase of a propagating optical wave front, which in turn can increase the performance of the adaptive optics. Polydimethylsiloxane (PDMS) has been widely used in microfabrication for microfluidic systems. However, few attentions were paid in the past to mechanical properties of PDMS. Importantly there is no report on influences of microfabrication processes which normally involve chemical reactors and biologically reaction processes. A comprehensive study was made in this work to study fundamental issues such as scaling law effects on PDMS properties, chemical emersion and temperature effects on mechanical properties of PDMS, PDMS compositions and resultant properties, as well as bonding strength, etc. Results achieved from this work will provide foundation of future developments of microfluidics utilizing PDMS

    A modular multi electrode array system for electrogenic cell characterisation and cardiotoxicity applications

    Get PDF
    Multi electrode array (MEA) systems have evolved from custom-made experimental tools, exploited for neural research, into commercially available systems that are used throughout non-invasive electrophysiological study. MEA systems are used in conjunction with cells and tissues from a number of differing organisms (e.g. mice, monkeys, chickens, plants). The development of MEA systems has been incremental over the past 30 years due to constantly changing specific bioscientific requirements in research. As the application of MEA systems continues to diversify contemporary commercial systems are requiring increased levels of sophistication and greater throughput capabilities. [Continues.

    Annual Report, 2017-2018

    Get PDF

    Integrated modular microfluidic system for forensic Alu DNA typing

    Get PDF
    Driven by the numerous applications of genome-related research, fully integrated microfluidic systems have been developed that have advanced the capabilities of molecular and, in particular, genetic analyses. A brief overview on integrated microfluidic systems for DNA analysis is given in Chapter 1 followed by a report on micro-capillary electrophoresis (µCE) of Alu elements with laser-induced fluorescence (LIF) detection, in which the monomorphic Alu insertions on the X and Y chromosomes were utilized to detect male DNA in large female DNA background (Y: X = 1:19) without cell sorting prior to the determination. The polymorphic Alu loci with known restricted geographical distribution were used for ethnicity determination. A valveless integrated microsystem that consists of three modules is discussed as well: (1) A solid-phase extraction (SPE) module microfabricated on polycarbonate, for DNA extraction from whole cell lysates (extraction bed capacity ~209 ±35.6 ng/cm² of total DNA). (2) A continuous-flow polymerase chain reaction (CFPCR) module fabricated in polycarbonate (Tg ~150 ºC) in which selected gene fragments were amplified using biotin and fluorescently-labeled primers accomplished by continuously shuttling small packets of PCR reagents and template through isothermal zones. (3) µCE module fabricated in poly(methylmethacrylate), which utilized a bioaffinity selection and purification bed (2.9-µL) to preconcentrate and purify the PCR products generated from the CFPCR module prior to µCE. Biotin-labeled CFPCR products were hydrostatically pumped through the streptavidin-modified bed where they were extracted onto the surface of the poly(methylmethacrylate) micropillars (50-µm width; 100-µm height; total surface area of ~117 mm²). This SPE process demonstrated high selectivity for biotinylated amplicons and utilized the strong streptavidin/biotin interaction (Kd =10-15M) to generate high recoveries. The SPE selected CFPCR products were thermally denatured and single stranded DNA released for size-based separations and LIF detection. The multiplexed SPE-CFPCR-µCE yielded detectable fluorescence signal (S/N≥3; LOD ~75 cells) for Alu DNA amplicons for gender and ethnicity determinations with a separation efficiency of ~1.5 x105 plates/m. Compared to traditional cross-T injection procedures typically used for µCE, the affinity preconcentration and injection procedure generated signal enhancements of 17-40 fold, critical for CFPCR thermal cyclers due to Taylor dispersion associated with their operation

    Autonomous capillary systems for life science research and medical diagnostics

    Get PDF
    In autonomous capillary systems (CS) minute amounts of liquid are transported owing to capillary forces. Such CSs are appealing due to their portability, flexibility, and the exceptional physical behavior of liquids in micrometer sized microchannels, in particular, capillarity and short diffusion times. CSs have shown to be a promising technology for miniaturized immunoassays in life science research and diagnostics. Building on existing experimental demonstrations of immunoassays in CSs, a theoretical model of such immunoassays is implemented, tools and CSs for performing immunoassays are developed, key functional elements of CSs such as capillary pumps and valves are explored experimentally, and a proof-of-concept of the ultimate goal of one-step immunoassays are given in this work. For the theoretical modeling of immunoassays in CSs a finite difference algorithm is applied to delineate the role of the transport of analyte molecules in the microchannel (convection and diffusion), the kinetics of binding between the analyte and the capture antibodies, and the surface density of the capture antibody on the assay. The model shows that assays can be greatly optimized by varying the flow velocity of the solution of analyte in the microchannels. The model also shows how much the analyte-antibody binding constant and the surface density of the capture antibodies influence the performance of the assay. We derive strategies to optimize assays toward maximal sensitivity, minimal sample volume requirement or fast performance. A method using evaporation for controlling the flow rate in CSs was developed for maximum flexibility for developing assays. The method allows to use small CSs that initially are filled by capillary forces and then provide a well defined area of the liquid-air interface from which liquid can evaporate. Temperature and humidity are continuously measured and Peltier-elements are used to adjust the temperatures in multiple areas of the CSs relative to the dew-point. Thereby flow rates in the range from ~1.2 nL s−1 to ~30 pL s−1 could be achieved in the microchannels. This method was then used for screening cells for surface receptors. CSs, that do not need any peripherals for controlling flow rates become even more appealing. We explored the filling behavior of such CSs having microchannels of various length and large capillary pumps. The capillary pumps comprise microstructures of various sizes and shapes, which are spaced to encode certain capillary pressures. The spacing and shape of the microstructures is also used to orient the filling front to obtain a reliable filling behavior and to minimize the risk of entrapping air. We show how two capillary pumps having different hydrodynamic properties can be connected to program a sequence of slow and fast flow rates in CSs. Liquid filling CSs can hardly be stopped, but in some cases it might be beneficial to do so. In a separate chapter we explore how microstructures need to be designed to use capillary forces to stop, time, or trigger liquids. Besides well-defined flow rates in CSs accurately patterned capture antibodies (cAbs) are key for performing high-sensitive surface immunoassays in CSs. We present a method compatible with mass fabrication for patterning cAbs in dense lines of up to 8 lines per millimeter. These cAbs are used with CSs that are optimized for convenient handling, pipetting of solutions, pumping of liquids such as human serum, and visualization of signals for fluorescence immunoassays to detect c-reactive protein (CRP) with a sensitivity of 0.9 ng mL−1 (7.8 pM) from 1 uL of CRP-spiked human serum, within 11 minutes, with 4 pipetting steps, and a total volume of sample and reagents of <1.5 uL. CSs for diagnostic applications have different requirements than CSs that are used as a research tool in life sciences, where a high flexibility and performance primes over the ease of use and portability of the CSs. We give a proof-of-concept for one-step immunoassays based on CSs which we think can be the base for developing portable diagnostics for point-of-care applications. All reagents are preloaded in the CSs. A sample loaded in the CSs redissolves and reconstitutes the detection antibodies (dAbs), analyte-dAb-complexes are formed and detected downstream in the CSs. A user only needs to load a sample and measure the result using a fluorescence microscope or scanner. C-reactive protein was detected in human serum at clinical concentrations within 10 minutes and using only 2 uL of sample

    Magnetic Nanoparticle Enhanced Actuation Strategy for mixing, separation, and detection of biomolecules in a Microfluidic Lab-on-a-Chip System

    Get PDF
    Magnetic nanoparticle (MNP) combined with biomolecules in a microfluidic system can be efficiently used in various applications such as mixing, pre-concentration, separation and detection. They can be either integrated for point-of care applications or used individually in the area of bio-defense, drug delivery, medical diagnostics, and pharmaceutical development. The interaction of magnetic fields with magnetic nanoparticles in microfluidic flows will allow simplifying the complexity of the present generation separation and detection systems. The ability to understand the dynamics of these interactions is a prerequisite for designing and developing more efficient systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design, develop and optimize the magnetic microfluidic systems for mixing, separation and detection. Different strategies to combine magnetism with microfluidic technology are explored; a time-dependent magnetic actuation is used for efficiently mixing low volume of samples whereas tangential microfluidic channels were fabricated to demonstrate a simple low cost magnetic switching for continuous separation of biomolecules. A simple low cost generic microfluidic platform is developed using assembly of readily available permanent magnets and electromagnets. Microfluidic channels were fabricated at much lower cost and with a faster construction time using our in-house developed micromolding technique that does not require a clean room. Residence-time distribution (RTD) analysis obtained using dynamic light scattering data from samples was successfully used for the first time in microfluidic system to characterize the performance. Both advanced multiphysics finite element models and proof of concept experimentation demonstrates that MNPs when tagged with biomolecules can be easily manipulated within the microchannel. They can be precisely captured, separated or detected with high efficiency and ease of operation. Presence of MNPs together with time-dependent magnetic actuation also helps in mixing as well as tagging biomolecules on chip, which is useful for point-of-care applications. The advanced mathematical model that takes into account mass and momentum transport, convection & diffusion, magnetic body forces acting on magnetic nanoparticles further demonstrates that the performance of microfluidic surface-based bio-assay can be increased by incorporating the idea of magnetic actuation. The numerical simulations were helpful in testing and optimizing key design parameters and demonstrated that fluid flow rate, magnetic field strength, and magnetic nanoparticle size had dramatic impact on the performance of microfluidic systems studied. This work will also emphasize the importance of considering magnetic nanoparticles interactions for a complete design of magnetic nanoparticle-based Lab-on-a-chip system where all the laboratory unit operations can be easily integrated. The strategy demonstrated in this work will not only be easy to implement but also allows for versatile biochip design rules and provides a simple approach to integrate external elements for enhancing mixing, separation and detection of biomolecules. The vast applications of this novel concept studied in this work demonstrate its potential of to be applied to other kinds of on-chip immunoassays in future. We think that the possibility of integrating magnetism with microfluidic-based bioassay on a disposable chip is a very promising and versatile approach for point-of care diagnostics especially in resource-limited settings

    Detection of superparamagnetic beads with TMR sensors

    Get PDF
    Walkenhorst S. Detection of superparamagnetic beads with TMR sensors. Bielefeld (Germany): Bielefeld University; 2007.Bislang war eine Signalverstärkung nötig für die Detektion einzelner magnetischer Marker mittels magnetoresistiver Sensoren. Die Detektion ohne Signalverstärkung mit Hilfe von magnetischen Tunnelelementen (englisch: "magnetic tunnel junction", MTJ) wäre ein Fortschritt im Bereich der Miniaturisierung und in der Anwendbarkeit als Biosensoren. Versuche mit konventionellen AlOx-Tunnelelementen wurden durchgeführt in Verbindung mit superparamagnetischen Teilchen, sog. Beads, die senkrecht zur Sensorebene gesättigt wurden. TMR-Messungen von Sensoren mit und ohne Bead, gesättigt und ungesättigt, wurden miteinander verglichen. Mit Helmholtz-Spulen ist eine verschobene Hysterese möglich, die auch schmaler ist, dagegen scheinen die Aufbauten mit Permanentmagneten nicht einsetzbar zu sein, da das magnetische Feld nicht homogen genug war. Von Elementen mit senkrechtem "pinning" wird erwartet, dass sie keine Hysterese zeigen. Für MgO-Tunnelelemente wurde senkrechtes pinning durch Formanisotropie verwirklicht. Mittels Elektronenstrahllithografie und Ionenätzen wurden Felder mit tausenden (Sub-)Mikrometerelementen hergestellt. Messungen auf Grundlage des magnetooptischen Kerr-Effekts zeigen Hysterese-freie Signale, wenn mit kleinen Feldern gemessen wird.Signal enhancement was so far necessary for detection of single magnetic markers using magnetoresistive sensors. Detection without signal enhancement on basis of a magnetic tunnel junction (MTJ) would be an important feature for miniaturization and for applications such as biosensors. Based on conventional MTJs with AlOx barrier several setups with out-of-plane saturation of superparamagnetic beads were analyzed. TMR measurements with and without beads on top of a sensor, alternatively saturated or not were compared. With Helmholtz coils a shifted and narrow hysteresis is possible, whereas permanent magnets seem to be not applicable due to a very inhomogeneous field in this setup. Elements are expected to have a hysteresis-free magnetic switching due to a perpendicular pinning. For MgO based sensors perpendicular pinning has been established via shape anisotropy. Arrays containing thousands of (sub-)micron elements were structured by electron beam lithography and ion beam etching. Measurements using the magneto-optical Kerr effect show a hysteresis-free signal for low magnetic fields

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers
    corecore