2,082 research outputs found

    Deep Over-sampling Framework for Classifying Imbalanced Data

    Full text link
    Class imbalance is a challenging issue in practical classification problems for deep learning models as well as traditional models. Traditionally successful countermeasures such as synthetic over-sampling have had limited success with complex, structured data handled by deep learning models. In this paper, we propose Deep Over-sampling (DOS), a framework for extending the synthetic over-sampling method to exploit the deep feature space acquired by a convolutional neural network (CNN). Its key feature is an explicit, supervised representation learning, for which the training data presents each raw input sample with a synthetic embedding target in the deep feature space, which is sampled from the linear subspace of in-class neighbors. We implement an iterative process of training the CNN and updating the targets, which induces smaller in-class variance among the embeddings, to increase the discriminative power of the deep representation. We present an empirical study using public benchmarks, which shows that the DOS framework not only counteracts class imbalance better than the existing method, but also improves the performance of the CNN in the standard, balanced settings

    Fidelity-Weighted Learning

    Full text link
    Training deep neural networks requires many training samples, but in practice training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality versus-quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we propose "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on two tasks in information retrieval and natural language processing where we outperform state-of-the-art alternative semi-supervised methods, indicating that our approach makes better use of strong and weak labels, and leads to better task-dependent data representations.Comment: Published as a conference paper at ICLR 201
    corecore