211 research outputs found

    Provably safe cruise control of vehicular platoons

    Full text link
    We synthesize performance-aware safe cruise control policies for longitudinal motion of platoons of autonomous vehicles. Using set-invariance theories, we guarantee infinite-time collision avoidance in the presence of bounded additive disturbances, while ensuring that the length and the cruise speed of the platoon are bounded within specified ranges. We propose: 1) a centralized control policy and 2) a distributed control policy, where each vehicle's control decision depends solely on its relative kinematics with respect to the platoon leader. Numerical examples are included.NSF; CPS-1446151; CMMI-1400167; FA 9550-15-1-0186 - AFOSR; Schlumberger Foundation Faculty for the Future Fellowship; FA 9550-15-1-0186 - AFOSR; NSF; ECCS-1550016; CNS 123922

    Effects of Communication Delay and Kinematic Variation in Vehicle Platooning

    Get PDF
    Vehicle platoons are efficient, closely-spaced groups of robotically controlled vehicles which travel at high speeds down the road, similar to carts in a train. Within this thesis, a promising control algorithm for vehicle platooning is explored. The control algorithm was previously demonstrated in a sterile setting which significantly reduced the challenges facing full-scale implementation of platoons, most notably loss of shared data and imprecision within the data. As found within this work, transmission loss and imprecise position, velocity, and acceleration data significantly degraded the control algorithm\u27s performance. Vehicles in the platoon became more closely spaced, changed speeds more frequently, and expended far more energy than necessary. Introducing a measure of each following vehicle\u27s position with respect to the lead vehicle into the control algorithm noticeably reduced platoon contraction. Adjusting the control algorithm\u27s responsiveness based on what data was successfully received reduced the speed-variations by vehicles. Finally, using past behavior to predict the next acceleration reduced the energy used by each vehicle. Combining these modifications with a model of the proposed communication scheme shows platoons of up to 25 vehicles are feasible

    Security of Vehicular Platooning

    Get PDF
    Platooning concept involves a group of vehicles acting as a single unit through coordination of movements. While Platooning as an evolving trend in mobility and transportation diminishes the individual and manual driving concerns, it creates new risks. New technologies and passenger’s safety and security further complicate matters and make platooning attractive target for the malicious minds. To improve the security of the vehicular platooning, threats and their potential impacts on vehicular platooning should be identified to protect the system against security risks. Furthermore, algorithms should be proposed to detect intrusions and mitigate the effects in case of attack. This dissertation introduces a new vulnerability in vehicular platooning from the control systems perspective and presents the detection and mitigation algorithms to protect vehicles and passengers in the event of the attack

    Cooperative control of autonomous connected vehicles from a Networked Control perspective: Theory and experimental validation

    Get PDF
    Formation control of autonomous connected vehicles is one of the typical problems addressed in the general context of networked control systems. By leveraging this paradigm, a platoon composed by multiple connected and automated vehicles is represented as one-dimensional network of dynamical agents, in which each agent only uses its neighboring information to locally control its motion, while it aims to achieve certain global coordination with all other agents. Within this theoretical framework, control algorithms are traditionally designed based on an implicit assumption of unlimited bandwidth and perfect communication environments. However, in practice, wireless communication networks, enabling the cooperative driving applications, introduce unavoidable communication impairments such as transmission delay and packet losses that strongly affect the performances of cooperative driving. Moreover, in addition to this problem, wireless communication networks can suffer different security threats. The challenge in the control field is hence to design cooperative control algorithms that are robust to communication impairments and resilient to cyber attacks. The work aim is to tackle and solve these challenges by proposing different properly designed control strategies. They are validated both in analytical, numerical and experimental ways. Obtained results confirm the effectiveness of the strategies in coping with communication impairments and security vulnerabilities

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Cognitive Vehicle Platooning in the Era of Automated Electric Transportation

    Get PDF
    Vehicle platooning is an important innovation in the automotive industry that aims at improving safety, mileage, efficiency, and the time needed to travel. This research focuses on the various aspects of vehicle platooning, one of the important aspects being analysis of different control strategies that lead to a stable and robust platoon. Safety of passengers being a very important consideration, the control design should be such that the controller remains robust under uncertain environments. As a part of the Department of Energy (DOE) project, this research also tries to show a demonstration of vehicle platooning using robots. In an automated highway scenario, a vehicle platoon can be thought of as a string of vehicles, following one another as a platoon. Being equipped by wireless communication capabilities, these vehicles communicate with one another to maintain their formation as a platoon, hence are cognitive. Autonomous capable vehicles in tightly spaced, computer-controlled platoons will lead to savings in energy due to reduced aerodynamic forces, as well as increased passenger comfort since there will be no sudden accelerations or decelerations. Impacts in the occurrence of collisions, if any, will be very low. The greatest benefit obtained is, however, an increase in highway capacity, along with reduction in traffic congestion, pollution, and energy consumption. Another aspect of this project is the automated electric transportation (AET). This aims at providing energy directly to vehicles from electric highways, thus reducing their energy consumption and CO2 emission. By eliminating the use of overhead wires, infrastructure can be upgraded by electrifying highways and providing energy on demand and in real time to moving vehicles via a wireless energy transfer phenomenon known as wireless inductive coupling. The work done in this research will help to gain an insight into vehicle platooning and the control system related to maintaining the vehicles in this formation

    Distributed H∞ Controller Design and Robustness Analysis for Vehicle Platooning Under Random Packet Drop

    Get PDF
    This paper presents the design of a robust distributed state-feedback controller in the discrete-time domain for homogeneous vehicle platoons with undirected topologies, whose dynamics are subjected to external disturbances and under random single packet drop scenario. A linear matrix inequality (LMI) approach is used for devising the control gains such that a bounded H∞ norm is guaranteed. Furthermore, a lower bound of the robustness measure, denoted as γ gain, is derived analytically for two platoon communication topologies, i.e., the bidirectional predecessor following (BPF) and the bidirectional predecessor leader following (BPLF). It is shown that the γ gain is highly affected by the communication topology and drastically reduces when the information of the leader is sent to all followers. Finally, numerical results demonstrate the ability of the proposed methodology to impose the platoon control objective for the BPF and BPLF topology under random single packet drop
    • …
    corecore