10,825 research outputs found

    Probabilistic analysis of a differential equation for linear programming

    Full text link
    In this paper we address the complexity of solving linear programming problems with a set of differential equations that converge to a fixed point that represents the optimal solution. Assuming a probabilistic model, where the inputs are i.i.d. Gaussian variables, we compute the distribution of the convergence rate to the attracting fixed point. Using the framework of Random Matrix Theory, we derive a simple expression for this distribution in the asymptotic limit of large problem size. In this limit, we find that the distribution of the convergence rate is a scaling function, namely it is a function of one variable that is a combination of three parameters: the number of variables, the number of constraints and the convergence rate, rather than a function of these parameters separately. We also estimate numerically the distribution of computation times, namely the time required to reach a vicinity of the attracting fixed point, and find that it is also a scaling function. Using the problem size dependence of the distribution functions, we derive high probability bounds on the convergence rates and on the computation times.Comment: 1+37 pages, latex, 5 eps figures. Version accepted for publication in the Journal of Complexity. Changes made: Presentation reorganized for clarity, expanded discussion of measure of complexity in the non-asymptotic regime (added a new section

    A simulation comparison of methods for new product location

    Get PDF
    Includes bibliographical references (p. 29-31)

    Probabilistic Interpretation of Linear Solvers

    Full text link
    This manuscript proposes a probabilistic framework for algorithms that iteratively solve unconstrained linear problems Bx=bBx = b with positive definite BB for xx. The goal is to replace the point estimates returned by existing methods with a Gaussian posterior belief over the elements of the inverse of BB, which can be used to estimate errors. Recent probabilistic interpretations of the secant family of quasi-Newton optimization algorithms are extended. Combined with properties of the conjugate gradient algorithm, this leads to uncertainty-calibrated methods with very limited cost overhead over conjugate gradients, a self-contained novel interpretation of the quasi-Newton and conjugate gradient algorithms, and a foundation for new nonlinear optimization methods.Comment: final version, in press at SIAM J Optimizatio
    • …
    corecore