2,766 research outputs found

    Differential Privacy in Distributed Settings

    Get PDF

    Techniques, Taxonomy, and Challenges of Privacy Protection in the Smart Grid

    Get PDF
    As the ease with which any data are collected and transmitted increases, more privacy concerns arise leading to an increasing need to protect and preserve it. Much of the recent high-profile coverage of data mishandling and public mis- leadings about various aspects of privacy exasperates the severity. The Smart Grid (SG) is no exception with its key characteristics aimed at supporting bi-directional information flow between the consumer of electricity and the utility provider. What makes the SG privacy even more challenging and intriguing is the fact that the very success of the initiative depends on the expanded data generation, sharing, and pro- cessing. In particular, the deployment of smart meters whereby energy consumption information can easily be collected leads to major public hesitations about the tech- nology. Thus, to successfully transition from the traditional Power Grid to the SG of the future, public concerns about their privacy must be explicitly addressed and fears must be allayed. Along these lines, this chapter introduces some of the privacy issues and problems in the domain of the SG, develops a unique taxonomy of some of the recently proposed privacy protecting solutions as well as some if the future privacy challenges that must be addressed in the future.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111644/1/Uludag2015SG-privacy_book-chapter.pd

    Revealing the Landscape of Privacy-Enhancing Technologies in the Context of Data Markets for the IoT: A Systematic Literature Review

    Get PDF
    IoT data markets in public and private institutions have become increasingly relevant in recent years because of their potential to improve data availability and unlock new business models. However, exchanging data in markets bears considerable challenges related to disclosing sensitive information. Despite considerable research focused on different aspects of privacy-enhancing data markets for the IoT, none of the solutions proposed so far seems to find a practical adoption. Thus, this study aims to organize the state-of-the-art solutions, analyze and scope the technologies that have been suggested in this context, and structure the remaining challenges to determine areas where future research is required. To accomplish this goal, we conducted a systematic literature review on privacy enhancement in data markets for the IoT, covering 50 publications dated up to July 2020, and provided updates with 24 publications dated up to May 2022. Our results indicate that most research in this area has emerged only recently, and no IoT data market architecture has established itself as canonical. Existing solutions frequently lack the required combination of anonymization and secure computation technologies. Furthermore, there is no consensus on the appropriate use of blockchain technology for IoT data markets and a low degree of leveraging existing libraries or reusing generic data market architectures. We also identified significant challenges remaining, such as the copy problem and the recursive enforcement problem that-while solutions have been suggested to some extent-are often not sufficiently addressed in proposed designs. We conclude that privacy-enhancing technologies need further improvements to positively impact data markets so that, ultimately, the value of data is preserved through data scarcity and users' privacy and businesses-critical information are protected.Comment: 49 pages, 17 figures, 11 table

    Functional encryption based approaches for practical privacy-preserving machine learning

    Get PDF
    Machine learning (ML) is increasingly being used in a wide variety of application domains. However, deploying ML solutions poses a significant challenge because of increasing privacy concerns, and requirements imposed by privacy-related regulations. To tackle serious privacy concerns in ML-based applications, significant recent research efforts have focused on developing privacy-preserving ML (PPML) approaches by integrating into ML pipeline existing anonymization mechanisms or emerging privacy protection approaches such as differential privacy, secure computation, and other architectural frameworks. While promising, existing secure computation based approaches, however, have significant computational efficiency issues and hence, are not practical. In this dissertation, we address several challenges related to PPML and propose practical secure computation based approaches to solve them. We consider both two-tier cloud-based and three-tier hybrid cloud-edge based PPML architectures and address both emerging deep learning models and federated learning approaches. The proposed approaches enable us to outsource data or update a locally trained model in a privacy-preserving manner by employing computation over encrypted datasets or local models. Our proposed secure computation solutions are based on functional encryption (FE) techniques. Evaluation of the proposed approaches shows that they are efficient and more practical than existing approaches, and provide strong privacy guarantees. We also address issues related to the trustworthiness of various entities within the proposed PPML infrastructures. This includes a third-party authority (TPA) which plays a critical role in the proposed FE-based PPML solutions, and cloud service providers. To ensure that such entities can be trusted, we propose a transparency and accountability framework using blockchain. We show that the proposed transparency framework is effective and guarantees security properties. Experimental evaluation shows that the proposed framework is efficient
    corecore