29,539 research outputs found

    Toward Multimodal Image-to-Image Translation

    Full text link
    Many image-to-image translation problems are ambiguous, as a single input image may correspond to multiple possible outputs. In this work, we aim to model a \emph{distribution} of possible outputs in a conditional generative modeling setting. The ambiguity of the mapping is distilled in a low-dimensional latent vector, which can be randomly sampled at test time. A generator learns to map the given input, combined with this latent code, to the output. We explicitly encourage the connection between output and the latent code to be invertible. This helps prevent a many-to-one mapping from the latent code to the output during training, also known as the problem of mode collapse, and produces more diverse results. We explore several variants of this approach by employing different training objectives, network architectures, and methods of injecting the latent code. Our proposed method encourages bijective consistency between the latent encoding and output modes. We present a systematic comparison of our method and other variants on both perceptual realism and diversity.Comment: NIPS 2017 Final paper. v4 updated acknowledgment. Website: https://junyanz.github.io/BicycleGAN

    MISO: Mutual Information Loss with Stochastic Style Representations for Multimodal Image-to-Image Translation

    Full text link
    Unpaired multimodal image-to-image translation is a task of translating a given image in a source domain into diverse images in the target domain, overcoming the limitation of one-to-one mapping. Existing multimodal translation models are mainly based on the disentangled representations with an image reconstruction loss. We propose two approaches to improve multimodal translation quality. First, we use a content representation from the source domain conditioned on a style representation from the target domain. Second, rather than using a typical image reconstruction loss, we design MILO (Mutual Information LOss), a new stochastically-defined loss function based on information theory. This loss function directly reflects the interpretation of latent variables as a random variable. We show that our proposed model Mutual Information with StOchastic Style Representation(MISO) achieves state-of-the-art performance through extensive experiments on various real-world datasets

    Diverse Image-to-Image Translation via Disentangled Representations

    Full text link
    Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.Comment: ECCV 2018 (Oral). Project page: http://vllab.ucmerced.edu/hylee/DRIT/ Code: https://github.com/HsinYingLee/DRIT

    Bridging Dialogue Generation and Facial Expression Synthesis

    Full text link
    Spoken dialogue systems that assist users to solve complex tasks such as movie ticket booking have become an emerging research topic in artificial intelligence and natural language processing areas. With a well-designed dialogue system as an intelligent personal assistant, people can accomplish certain tasks more easily via natural language interactions. Today there are several virtual intelligent assistants in the market; however, most systems only focus on single modality, such as textual or vocal interaction. A multimodal interface has various advantages: (1) allowing human to communicate with machines in a natural and concise form using the mixture of modalities that most precisely convey the intention to satisfy communication needs, and (2) providing more engaging experience by natural and human-like feedback. This paper explores a brand new research direction, which aims at bridging dialogue generation and facial expression synthesis for better multimodal interaction. The goal is to generate dialogue responses and simultaneously synthesize corresponding visual expressions on faces, which is also an ultimate step toward more human-like virtual assistants

    DRIT++: Diverse Image-to-Image Translation via Disentangled Representations

    Full text link
    Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for this task: 1) lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for generating diverse outputs without paired training images. To synthesize diverse outputs, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and attribute vectors sampled from the attribute space to synthesize diverse outputs at test time. To handle unpaired training data, we introduce a cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative evaluations, we measure realism with user study and Fr\'{e}chet inception distance, and measure diversity with the perceptual distance metric, Jensen-Shannon divergence, and number of statistically-different bins.Comment: IJCV Journal extension for ECCV 2018 "Diverse Image-to-Image Translation via Disentangled Representations" arXiv:1808.00948. Project Page: http://vllab.ucmerced.edu/hylee/DRIT_pp/ Code: https://github.com/HsinYingLee/DRI

    Harmonizing Maximum Likelihood with GANs for Multimodal Conditional Generation

    Full text link
    Recent advances in conditional image generation tasks, such as image-to-image translation and image inpainting, are largely accounted to the success of conditional GAN models, which are often optimized by the joint use of the GAN loss with the reconstruction loss. However, we reveal that this training recipe shared by almost all existing methods causes one critical side effect: lack of diversity in output samples. In order to accomplish both training stability and multimodal output generation, we propose novel training schemes with a new set of losses named moment reconstruction losses that simply replace the reconstruction loss. We show that our approach is applicable to any conditional generation tasks by performing thorough experiments on image-to-image translation, super-resolution and image inpainting using Cityscapes and CelebA dataset. Quantitative evaluations also confirm that our methods achieve a great diversity in outputs while retaining or even improving the visual fidelity of generated samples.Comment: Accepted as a conference paper at ICLR 201

    iParaphrasing: Extracting Visually Grounded Paraphrases via an Image

    Full text link
    A paraphrase is a restatement of the meaning of a text in other words. Paraphrases have been studied to enhance the performance of many natural language processing tasks. In this paper, we propose a novel task iParaphrasing to extract visually grounded paraphrases (VGPs), which are different phrasal expressions describing the same visual concept in an image. These extracted VGPs have the potential to improve language and image multimodal tasks such as visual question answering and image captioning. How to model the similarity between VGPs is the key of iParaphrasing. We apply various existing methods as well as propose a novel neural network-based method with image attention, and report the results of the first attempt toward iParaphrasing.Comment: COLING 201

    SingleGAN: Image-to-Image Translation by a Single-Generator Network using Multiple Generative Adversarial Learning

    Full text link
    Image translation is a burgeoning field in computer vision where the goal is to learn the mapping between an input image and an output image. However, most recent methods require multiple generators for modeling different domain mappings, which are inefficient and ineffective on some multi-domain image translation tasks. In this paper, we propose a novel method, SingleGAN, to perform multi-domain image-to-image translations with a single generator. We introduce the domain code to explicitly control the different generative tasks and integrate multiple optimization goals to ensure the translation. Experimental results on several unpaired datasets show superior performance of our model in translation between two domains. Besides, we explore variants of SingleGAN for different tasks, including one-to-many domain translation, many-to-many domain translation and one-to-one domain translation with multimodality. The extended experiments show the universality and extensibility of our model.Comment: Accepted in ACCV 2018. Code is available at https://github.com/Xiaoming-Yu/SingleGA

    Streetscape augmentation using generative adversarial networks: insights related to health and wellbeing

    Full text link
    Deep learning using neural networks has provided advances in image style transfer, merging the content of one image (e.g., a photo) with the style of another (e.g., a painting). Our research shows this concept can be extended to analyse the design of streetscapes in relation to health and wellbeing outcomes. An Australian population health survey (n=34,000) was used to identify the spatial distribution of health and wellbeing outcomes, including general health and social capital. For each outcome, the most and least desirable locations formed two domains. Streetscape design was sampled using around 80,000 Google Street View images per domain. Generative adversarial networks translated these images from one domain to the other, preserving the main structure of the input image, but transforming the `style' from locations where self-reported health was bad to locations where it was good. These translations indicate that areas in Melbourne with good general health are characterised by sufficient green space and compactness of the urban environment, whilst streetscape imagery related to high social capital contained more and wider footpaths, fewer fences and more grass. Beyond identifying relationships, the method is a first step towards computer-generated design interventions that have the potential to improve population health and wellbeing.Comment: 20 pages, 8 figures. Preprint accepted for publication in Sustainable Cities and Societ

    Exploring Models and Data for Remote Sensing Image Caption Generation

    Full text link
    Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimalComment: 14 pages, 8 figure
    corecore