1,510 research outputs found

    TOWARD MORE ACCURATE IRIS RECOGNITION USING DILATED RESIDUAL FEATURES

    Get PDF
    Since of the expanding prominence of iris biometrics, new sensors are being produced for procuring iris pictures and existing ones are in effect ceaselessly overhauled. Re-selecting clients each time another sensor is conveyed is costly and tedious, particularly in applications with countless enlisted clients. In any case, ongoing examinations show that cross-sensor coordinating, where the test tests are checked utilizing information enlisted with an alternate sensor, regularly lead to diminished execution. In this dissertation, we propose an AI procedure to moderate the cross-sensor execution debasement by adjusting the iris tests starting with one sensor then onto the next. We first present a novel advancement structure for learning changes on iris biometrics. We at that point use this structure for sensor transformation, by diminishing the distance between tests of a similar class, and expanding it between tests of various classes, independent of the sensors obtaining them. Broad assessments on iris information from different sensors show that the proposed technique prompts improvement in cross-sensor acknowledgment precision. Moreover, since the proposed strategy requires negligible changes to the iris acknowledgment pipeline, it can undoubtedly be fused into existing iris acknowledgment frameworks

    Constrained Design of Deep Iris Networks

    Full text link
    Despite the promise of recent deep neural networks in the iris recognition setting, there are vital properties of the classic IrisCode which are almost unable to be achieved with current deep iris networks: the compactness of model and the small number of computing operations (FLOPs). This paper re-models the iris network design process as a constrained optimization problem which takes model size and computation into account as learning criteria. On one hand, this allows us to fully automate the network design process to search for the best iris network confined to the computation and model compactness constraints. On the other hand, it allows us to investigate the optimality of the classic IrisCode and recent iris networks. It also allows us to learn an optimal iris network and demonstrate state-of-the-art performance with less computation and memory requirements

    Complex-valued Iris Recognition Network

    Full text link
    In this work, we design a complex-valued neural network for the task of iris recognition. Unlike the problem of general object recognition, where real-valued neural networks can be used to extract pertinent features, iris recognition depends on the extraction of both phase and amplitude information from the input iris texture in order to better represent its stochastic content. This necessitates the extraction and processing of phase information that cannot be effectively handled by a real-valued neural network. In this regard, we design a complex-valued neural network that can better capture the multi-scale, multi-resolution, and multi-orientation phase and amplitude features of the iris texture. We show a strong correspondence of the proposed complex-valued iris recognition network with Gabor wavelets that are used to generate the classical IrisCode; however, the proposed method enables automatic complex-valued feature learning that is tailored for iris recognition. Experiments conducted on three benchmark datasets - ND-CrossSensor-2013, CASIA-Iris-Thousand and UBIRIS.v2 - show the benefit of the proposed network for the task of iris recognition. Further, the generalization capability of the proposed network is demonstrated by training and testing it across different datasets. Finally, visualization schemes are used to convey the type of features being extracted by the complex-valued network in comparison to classical real-valued networks. The results of this work are likely to be applicable in other domains, where complex Gabor filters are used for texture modeling

    Visionary Ophthalmics: Confluence of Computer Vision and Deep Learning for Ophthalmology

    Get PDF
    Ophthalmology is a medical field ripe with opportunities for meaningful application of computer vision algorithms. The field utilizes data from multiple disparate imaging techniques, ranging from conventional cameras to tomography, comprising a diverse set of computer vision challenges. Computer vision has a rich history of techniques that can adequately meet many of these challenges. However, the field has undergone something of a revolution in recent times as deep learning techniques have sprung into the forefront following advances in GPU hardware. This development raises important questions regarding how to best leverage insights from both modern deep learning approaches and more classical computer vision approaches for a given problem. In this dissertation, we tackle challenging computer vision problems in ophthalmology using methods all across this spectrum. Perhaps our most significant work is a highly successful iris registration algorithm for use in laser eye surgery. This algorithm relies on matching features extracted from the structure tensor and a Gabor wavelet – a classically driven approach that does not utilize modern machine learning. However, drawing on insight from the deep learning revolution, we demonstrate successful application of backpropagation to optimize the registration significantly faster than the alternative of relying on finite differences. Towards the other end of the spectrum, we also present a novel framework for improving RANSAC segmentation algorithms by utilizing a convolutional neural network (CNN) trained on a RANSAC-based loss function. Finally, we apply state-of-the-art deep learning methods to solve the problem of pathological fluid detection in optical coherence tomography images of the human retina, using a novel retina-specific data augmentation technique to greatly expand the data set. Altogether, our work demonstrates benefits of applying a holistic view of computer vision, which leverages deep learning and associated insights without neglecting techniques and insights from the previous era

    U-Net and its variants for medical image segmentation: theory and applications

    Full text link
    U-net is an image segmentation technique developed primarily for medical image analysis that can precisely segment images using a scarce amount of training data. These traits provide U-net with a very high utility within the medical imaging community and have resulted in extensive adoption of U-net as the primary tool for segmentation tasks in medical imaging. The success of U-net is evident in its widespread use in all major image modalities from CT scans and MRI to X-rays and microscopy. Furthermore, while U-net is largely a segmentation tool, there have been instances of the use of U-net in other applications. As the potential of U-net is still increasing, in this review we look at the various developments that have been made in the U-net architecture and provide observations on recent trends. We examine the various innovations that have been made in deep learning and discuss how these tools facilitate U-net. Furthermore, we look at image modalities and application areas where U-net has been applied.Comment: 42 pages, in IEEE Acces

    Deep Semantic Segmentation of Natural and Medical Images: A Review

    Full text link
    The semantic image segmentation task consists of classifying each pixel of an image into an instance, where each instance corresponds to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the leading deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural, data synthesis-based, loss function-based, sequenced models, weakly supervised, and multi-task methods and provide a comprehensive review of the contributions in each of these groups. Further, for each group, we analyze each variant of these groups and discuss the limitations of the current approaches and present potential future research directions for semantic image segmentation.Comment: 45 pages, 16 figures. Accepted for publication in Springer Artificial Intelligence Revie

    Accurate pupil center detection in off-the-shelf eye tracking systems using convolutional neural networks

    Get PDF
    Remote eye tracking technology has suffered an increasing growth in recent years due to its applicability in many research areas. In this paper, a video-oculography method based on convolutional neural networks (CNNs) for pupil center detection over webcam images is proposed. As the first contribution of this work and in order to train the model, a pupil center manual labeling procedure of a facial landmark dataset has been performed. The model has been tested over both real and synthetic databases and outperforms state-of-the-art methods, achieving pupil center estimation errors below the size of a constricted pupil in more than 95% of the images, while reducing computing time by a 8 factor. Results show the importance of use high quality training data and well-known architectures to achieve an outstanding performance.This research was funded by Public University of Navarra (Pre-doctoral research grant) and by the Spanish Ministry of Science and Innovation under Contract 'Challenges of Eye Tracking Off-the-Shelf (ChETOS)' with reference: PID2020-118014RB-I0

    Deep learning algorithms to isolate and quantify the structures of the anterior segment in optical coherence tomography images

    Get PDF
    Background/Aims Accurate isolation and quantification of intraocular dimensions in the anterior segment (AS) of the eye using optical coherence tomography (OCT) images is important in the diagnosis and treatment of many eye diseases, especially angle-closure glaucoma. Method In this study, we developed a deep convolutional neural network (DCNN) for the localisation of the scleral spur; moreover, we introduced an information-rich segmentation approach for this localisation problem. An ensemble of DCNNs for the segmentation of AS structures (iris, corneosclera shell adn anterior chamber) was developed. Based on the results of two previous processes, an algorithm to automatically quantify clinically important measurements were created. 200 images from 58 patients (100 eyes) were used for testing. Results With limited training data, the DCNN was able to detect the scleral spur on unseen anterior segment optical coherence tomography (ASOCT) images as accurately as an experienced ophthalmologist on the given test dataset and simultaneously isolated the AS structures with a Dice coefficient of 95.7%. We then automatically extracted eight clinically relevant ASOCT measurements and proposed an automated quality check process that asserts the reliability of these measurements. When combined with an OCT machine capable of imaging multiple radial sections, the algorithms can provide a more complete objective assessment. The total segmentation and measurement time for a single scan is less than 2 s. Conclusion This is an essential step towards providing a robust automated framework for reliable quantification of ASOCT scans, for applications in the diagnosis and management of angle-closure glaucoma

    Attention Mechanisms in Medical Image Segmentation: A Survey

    Full text link
    Medical image segmentation plays an important role in computer-aided diagnosis. Attention mechanisms that distinguish important parts from irrelevant parts have been widely used in medical image segmentation tasks. This paper systematically reviews the basic principles of attention mechanisms and their applications in medical image segmentation. First, we review the basic concepts of attention mechanism and formulation. Second, we surveyed over 300 articles related to medical image segmentation, and divided them into two groups based on their attention mechanisms, non-Transformer attention and Transformer attention. In each group, we deeply analyze the attention mechanisms from three aspects based on the current literature work, i.e., the principle of the mechanism (what to use), implementation methods (how to use), and application tasks (where to use). We also thoroughly analyzed the advantages and limitations of their applications to different tasks. Finally, we summarize the current state of research and shortcomings in the field, and discuss the potential challenges in the future, including task specificity, robustness, standard evaluation, etc. We hope that this review can showcase the overall research context of traditional and Transformer attention methods, provide a clear reference for subsequent research, and inspire more advanced attention research, not only in medical image segmentation, but also in other image analysis scenarios.Comment: Submitted to Medical Image Analysis, survey paper, 34 pages, over 300 reference
    • …
    corecore