22,954 research outputs found

    Network Virtual Machine (NetVM): A New Architecture for Efficient and Portable Packet Processing Applications

    Get PDF
    A challenge facing network device designers, besides increasing the speed of network gear, is improving its programmability in order to simplify the implementation of new applications (see for example, active networks, content networking, etc). This paper presents our work on designing and implementing a virtual network processor, called NetVM, which has an instruction set optimized for packet processing applications, i.e., for handling network traffic. Similarly to a Java Virtual Machine that virtualizes a CPU, a NetVM virtualizes a network processor. The NetVM is expected to provide a compatibility layer for networking tasks (e.g., packet filtering, packet counting, string matching) performed by various packet processing applications (firewalls, network monitors, intrusion detectors) so that they can be executed on any network device, ranging from expensive routers to small appliances (e.g. smart phones). Moreover, the NetVM will provide efficient mapping of the elementary functionalities used to realize the above mentioned networking tasks upon specific hardware functional units (e.g., ASICs, FPGAs, and network processing elements) included in special purpose hardware systems possibly deployed to implement network devices

    ORIGAMIX, a CdTe-based spectro-imager development for nuclear applications

    Full text link
    The Astrophysics Division of CEA Saclay has a long history in the development of CdTe based pixelated detection planes for X and gamma-ray astronomy, with time-resolved imaging and spectrometric capabilities. The last generation, named Caliste HD, is an all-in-one modular instrument that fulfills requirements for space applications. Its full-custom front-end electronics is designed to work over a large energy range from 2 keV to 1 MeV with excellent spectroscopic performances, in particular between 10 and 100 keV (0.56 keV FWHM and 0.67 keV FWHM at 13.9 and 59.5 keV). In the frame of the ORIGAMIX project, a consortium based on research laboratories and industrials has been settled in order to develop a new generation of gamma camera. The aim is to develop a system based on the Caliste architecture for post-accidental interventions or homeland security, but integrating new properties (advanced spectrometry, hybrid working mode) and suitable for industry. A first prototype was designed and tested to acquire feedback for further developments. In this study, we particularly focused on spectrometric performances with high energies and high fluxes. Therefore, our device was exposed to energies up to 700 keV (133Ba, 137Cs) and we measured the evolution of energy resolution (0.96 keV at 80 keV, 2.18 keV at 356 keV, 3.33 keV at 662 keV). Detection efficiency decreases after 150 keV, as Compton effect becomes dominant. However, CALISTE is also designed to handle multiple events, enabling Compton scattering reconstruction, which can drastically improve detection efficiencies and dynamic range for higher energies up to 1408 keV (22Na, 60Co, 152Eu) within a 1-mm thick detector. In particular, such spectrometric performances obtained with 152Eu and 60Co were never measured before with this kind of detector.Comment: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Available online 9 January 2015, ISSN 0168-9002 (http://www.sciencedirect.com/science/article/pii/S0168900215000133). Keywords: CdTe; X-ray; Gamma-ray; Spectrometry; Charge-sharing; Astrophysics Instrumentation; Nuclear Instrumentation; Gamma-ray camera

    TES: A modular systems approach to expert system development for real-time space applications

    Get PDF
    A major goal of the Space Station era is to reduce reliance on support from ground based experts. The development of software programs using expert systems technology is one means of reaching this goal without requiring crew members to become intimately familiar with the many complex spacecraft subsystems. Development of an expert systems program requires a validation of the software with actual flight hardware. By combining accurate hardware and software modelling techniques with a modular systems approach to expert systems development, the validation of these software programs can be successfully completed with minimum risk and effort. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation tasks as they would otherwise be carried out by a knowledgeable designer. The development process and primary features of TES, a modular systems approach, and the lessons learned are discussed

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Reconfigurable Flood Wall Inspired by Architected Origami

    Get PDF
    Recent interest in the art of origami has opened a wide range of engineering applications and possibilities. Shape changing structures based on origami have had a large influence on the drive for efficient, sustainable engineering solutions. However, development in novel macro-scale utilization is lacking compared to the effort towards micro-scale devices. There exists an opening for environmentally actuated structures that improve quality for life of humans and the natural environment. Specifically, resilient infrastructure systems could potentially benefit from the tailorable properties and programmable reconfiguration of origami-inspired designs. The realm of flood protection and overall water resources management creates a unique opportunity for adaptable structures. A flood protection system, or flood wall, is one application of the origami technique. In many situations, flood protection is visually displeasing and hinders an otherwise scenic natural environment within a cityscape. By applying a permanent, adaptable protection system in flood-prone areas, not only will general aesthetics be conserved, but quick deployment in disaster situations will be ensured. With a rapidly changing climate and an increase in storm disaster events, an efficient flood-protection system is vital. In this study, simple rigid flood barriers are compared to adaptable wall systems that utilize multi-stable configurations. The flood event is characterized by a surcharge of water that is suddenly introduced–like that of a flash flood–and sustained at steady-state. Small-scale prototypes are tested in a hydraulic flume and compared to a numerical simulation for validation.Ohio State University College of Engineering Undergraduate Research ScholarshipNo embargoAcademic Major: Civil Engineerin

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft
    • …
    corecore