61,245 research outputs found

    The non-coding RNA landscape of plasma cell dyscrasias

    Get PDF
    Despite substantial advancements have been done in the understanding of the pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The discovery and subsequent characterization of non-coding transcripts, which include several members with diverse length and mode of action, has unraveled novel mechanisms of gene expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most relevant findings on the biological and clinical features of the non-coding RNA landscape of malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding RNAs will be examined, along with the mechanisms accounting for their dysregulation and the recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in the near future

    MTSS1 is a critical epigenetically regulated tumor suppressor in CML

    Get PDF
    Chronic myeloid leukemia (CML) is driven by malignant stem cells that can persist despite therapy. We have identified Metastasis suppressor 1 (Mtss1/MIM) to be downregulated in hematopoietic stem and progenitor cells from leukemic transgenic SCLtTA/Bcr-Abl mice and in patients with CML at diagnosis, and Mtss1 was restored when patients achieved complete remission. Forced expression of Mtss1 decreased clonogenic capacity and motility of murine myeloid progenitor cells and reduced tumor growth. Viral transduction of Mtss1 into lineage depleted SCLtTA/Bcr-Abl bone marrow cells decreased leukemic cell burden in recipients, and leukemogenesis was reduced upon injection of Mtss1 overexpressing murine myeloid 32D cells. Tyrosine kinase inhibitor (TKI) therapy and reversion of Bcr-Abl expression increased Mtss1 expression but failed to restore it to control levels. CML patient samples revealed higher DNA methylation of specific Mtss1 promoter CpG sites that contain binding sites for Kaiso and Rest transcription factors. In summary, we identified a novel tumor suppressor in CML stem cells that is downregulated by both Bcr-Abl kinase-dependent and -independent mechanisms. Restored Mtss1 expression markedly inhibits primitive leukemic cell biology in vivo, providing a therapeutic rationale for the Bcr-Abl-Mtss1 axis to target TKI resistant CML stem cells in patients

    The future of laboratory medicine - A 2014 perspective.

    Get PDF
    Predicting the future is a difficult task. Not surprisingly, there are many examples and assumptions that have proved to be wrong. This review surveys the many predictions, beginning in 1887, about the future of laboratory medicine and its sub-specialties such as clinical chemistry and molecular pathology. It provides a commentary on the accuracy of the predictions and offers opinions on emerging technologies, economic factors and social developments that may play a role in shaping the future of laboratory medicine

    Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of kidney cysts leading to kidney failure in adulthood. Inhibition of mammalian target of rapamycin (mTOR) slows polycystic kidney disease (PKD) progression in animal models, but randomized controlled trials failed to prove efficacy of mTOR inhibitor treatment. Here, we demonstrate that treatment with mTOR inhibitors result in the removal of negative feedback loops and up-regulates pro-proliferative phosphatidylinositol 3-kinase (PI3K)-Akt and PI3K-extracellular signal-regulated kinase (ERK) signaling in rat and mouse PKD models. Dual mTOR/PI3K inhibition with NVP-BEZ235 abrogated these pro-proliferative signals and normalized kidney morphology and function by blocking proliferation and fibrosis. Our findings suggest that multi-target PI3K/mTOR inhibition may represent a potential treatment for ADPKD

    HIV-associated progressive multifocal leukoencephalopathy. Current perspectives

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system, caused by the polyomavirus JC and occurring almost exclusively in the context of severe immune depression. AIDS represents the most common predisposing condition for PML development. Antiretroviral treatment has reduced PML incidence in HIV-infected subjects, but the disease remains a severe and life-threatening complication of AIDS, considering thus far the lack of an effective anti-JC virus (JCV) direct-acting antiviral drug. In the last decade, the use of monoclonal antibodies for treating immune-based diseases evidenced new predisposing conditions for PML development, promoting a renewed interest in PML pathogenesis. In this article, we review the current knowledge on JCV epidemiology and AIDS-associated PML incidence, JCV viral cycle, pathogenesis, and the interplay with HIV infection. We give an updated overview of diagnostic and prognostic tools available for PML diagnosis and describe past and current therapeutic approaches, including new strategies for PML cure

    Unique Molecular Features in High-Risk Histology Endometrial Cancers

    Get PDF
    Endometrial cancer is the most common gynecologic malignancy in the United States and the sixth most common cancer in women worldwide. Fortunately, most women who develop endometrial cancer have low-grade early-stage endometrioid carcinomas, and simple hysterectomy is curative. Unfortunately, 15% of women with endometrial cancer will develop high-risk histologic tumors including uterine carcinosarcoma or high-grade endometrioid, clear cell, or serous carcinomas. These high-risk histologic tumors account for more than 50% of deaths from this disease. In this review, we will highlight the biologic differences between low- and high-risk carcinomas with a focus on the cell of origin, early precursor lesions including atrophic and proliferative endometrium, and the potential role of stem cells. We will discuss treatment, including standard of care therapy, hormonal therapy, and precision medicine-based or targeted molecular therapies. We will also discuss the impact and need for model systems. The molecular underpinnings behind this high death to incidence ratio are important to understand and improve outcomes

    Nanobodies as tools to understand, diagnose, and treat African trypanosomiasis

    Get PDF
    African trypanosomes are strictly extracellular protozoan parasites that cause diseases in humans and livestock and significantly affect the economic development of sub-Saharan Africa. Due to an elaborate and efficient (vector)-parasite-host interplay, required to complete their life cycle/transmission, trypanosomes have evolved efficient immune escape mechanisms that manipulate the entire host immune response. So far, not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. Current therapies, however, exhibit high drug toxicity and an increased drug resistance is being reported. In addition, diagnosis is often hampered due to the inadequacy of current diagnostic procedures. In the context of tackling the shortcomings of current treatment and diagnostic approaches, nanobodies (Nbs, derived from the heavy chain-only antibodies of camels and llamas) might represent unmet advantages compared to conventional tools. Indeed, the combination of their small size, high stability, high affinity, and specificity for their target and tailorability represents a unique advantage, which is reflected by their broad use in basic and clinical research to date. In this article, we will review and discuss (i) diagnostic and therapeutic applications of Nbs that are being evaluated in the context of African trypanosomiasis, (ii) summarize new strategies that are being developed to optimize their potency for advancing their use, and (iii) document on unexpected properties of Nbs, such as inherent trypanolytic activities, that besides opening new therapeutic avenues, might offer new insight in hidden biological activities of conventional antibodies

    Diagnosis and management of iridocorneal endothelial syndrome

    Get PDF
    The iridocorneal endothelial (ICE) syndrome is a rare ocular disorder that includes a group of conditions characterized by structural and proliferative abnormalities of the corneal endothelium, the anterior chamber angle, and the iris. Common clinical features include corneal edema, secondary glaucoma, iris atrophy, and pupillary anomalies, ranging from distortion to polycoria. The main subtypes of this syndrome are the progressive iris atrophy, the Cogan-Reese syndrome, and the Chandler syndrome. ICE syndrome is usually diagnosed in women in the adult age. Clinical history and complete eye examination including tonometry and gonioscopy are necessary to reach a diagnosis. Imaging techniques, such as in vivo confocal microscopy and ultrasound biomicroscopy, are used to confirm the diagnosis by revealing the presence of "ICE-cells" on the corneal endothelium and the structural changes of the anterior chamber angle. An early diagnosis is helpful to better manage the most challenging complications such as secondary glaucoma and corneal edema. Treatment of ICE-related glaucoma often requires glaucoma filtering surgery with antifibrotic agents and the use of glaucoma drainage implants should be considered early in the management of these patients. Visual impairment and pain associated with corneal edema can be successfully managed with endothelial keratoplasty

    Advocating the need of a systems biology approach for personalised prognosis and treatment of B-CLL patients

    Get PDF
    The clinical course of B-CLL is heterogeneous. This heterogeneity leads to a clinical dilemma: can we identify those patients who will benefit from early treatment and predict the survival? In recent years, mathematical modelling has contributed significantly in understanding the complexity of diseases. In order to build a mathematical model for determining prognosis of B-CLL one has to identify, characterise and quantify key molecules involved in the disease. Here we discuss the need and role of mathematical modelling in predicting B-CLL disease pathogenesis and suggest a new systems biology approach for a personalised therapy of B-CLL patients

    Heterologous matrix metalloproteinase gene promoter activity allows In Vivo real-time imaging of Bleomycin-induced Lung fibrosis in transiently transgenized mice

    Get PDF
    Idiopathic pulmonary fibrosis is a very common interstitial lung disease derived from chronic inflammatory insults, characterized by massive scar tissue deposition that causes the progressive loss of lung function and subsequent death for respiratory failure.Bleomycin is used as the standard agent to induce experimental pulmonary fibrosis in animal models for the study of its pathogenesis. However, to visualize the establishment of lung fibrosis after treatment, the animal sacrifice is necessary. Thus, the aim of this study was to avoid this limitation by using an innovative approach based on a double bleomycin treatment protocol, along with the in vivo images analysis of bleomycintreated mice. A reporter gene construct, containing the luciferase open reading frame under the matrix metalloproteinase-1 promoter control region, was tested on doublebleomycin-treated mice to investigate, in real time, the correlation between bleomycin treatment, inflammation, tissue remodeling and fibrosis. Bioluminescence emitted by the lungs of bleomycin-treated mice, corroborated by fluorescent molecular tomography, successfully allowed real time monitoring of fibrosis establishment. The reporter gene technology experienced in this work could represent an advanced functional approach for real time non-invasive assessment of disease evolution during therapy, in a reliable and translational living animal model.Fil: Stellari, Fabio Franco. Chiese Farmaceutici; ItaliaFil: Ruscitti, Francesca. Chiese Farmaceutici; ItaliaFil: Pompilio, Daniela. Chiese Farmaceutici; ItaliaFil: Ravanetti, Francesca. UniversitĂ  di Parma. Dipartimento di Scienze Medico Veterinarie; ItaliaFil: Tebaldi, Giulia. UniversitĂ  di Parma. Dipartimento di Scienze Medico Veterinarie; ItaliaFil: Macchi, Francesca. UniversitĂ  di Parma. Dipartimento di Scienze Medico Veterinarie; ItaliaFil: Verna, Andrea Elizabeth. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro Regional Buenos Aires Sur. EstaciĂłn Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Chiese Farmaceutici; ItaliaFil: Villetti, Gino. Chiese Farmaceutici; ItaliaFil: Donofrio, Gaetano. UniversitĂ  di Parma. Dipartimento di Scienze Medico Veterinarie ; Itali
    • …
    corecore