50,196 research outputs found

    Improving forecast accuracy by combining recursive and rolling forecasts

    Get PDF
    This paper presents analytical, Monte Carlo, and empirical evidence on the effectiveness of combining recursive and rolling forecasts when linear predictive models are subject to structural change. We first provide a characterization of the bias-variance tradeoff faced when choosing between either the recursive and rolling schemes or a scalar convex combination of the two. From that, we derive pointwise optimal, time-varying and data-dependent observation windows and combining weights designed to minimize mean square forecast error. We then proceed to consider other methods of forecast combination, including Bayesian methods that shrink the rolling forecast to the recursive and Bayesian model averaging. Monte Carlo experiments and several empirical examples indicate that although the recursive scheme is often difficult to beat, when gains can be obtained, some form of shrinkage can often provide improvements in forecast accuracy relative to forecasts made using the recursive scheme or the rolling scheme with a fixed window width.Forecasting

    PReMo : An Analyzer for P robabilistic Re cursive Mo dels

    Get PDF
    This paper describes PReMo, a tool for analyzing Recursive Markov Chains, and their controlled/game extensions: (1-exit) Recursive Markov Decision Processes and Recursive Simple Stochastic Games

    Multiscale likelihood analysis and complexity penalized estimation

    Full text link
    We describe here a framework for a certain class of multiscale likelihood factorizations wherein, in analogy to a wavelet decomposition of an L^2 function, a given likelihood function has an alternative representation as a product of conditional densities reflecting information in both the data and the parameter vector localized in position and scale. The framework is developed as a set of sufficient conditions for the existence of such factorizations, formulated in analogy to those underlying a standard multiresolution analysis for wavelets, and hence can be viewed as a multiresolution analysis for likelihoods. We then consider the use of these factorizations in the task of nonparametric, complexity penalized likelihood estimation. We study the risk properties of certain thresholding and partitioning estimators, and demonstrate their adaptivity and near-optimality, in a minimax sense over a broad range of function spaces, based on squared Hellinger distance as a loss function. In particular, our results provide an illustration of how properties of classical wavelet-based estimators can be obtained in a single, unified framework that includes models for continuous, count and categorical data types

    Escaping Nash inflation

    Get PDF
    Mean dynamics govern convergence to rational expectations equilibria of self-referential systems under least squares learning. We highlight escape dynamics that propel away from a rational expectations equilibrium under fixed-gain recursive learning schemes. These learning schemes discount past observations. In a model with a unique self-confirming equilibrium, we show that the destination of the escape dynamics is an outcome associated with government discovery of too strong a version of the natural rate hypothesis. That destination is not sustainable as a self-confirming equilibrium but is visited recurrently. The escape route dynamics cause recurrent outcomes close to the Ramsey (commitment) inflation rate in a model with an adaptive government. JEL Classification: E3, E52, E58

    Aversion to ambiguity and model misspecification in dynamic stochastic environments

    Get PDF
    Preferences that accommodate aversion to subjective uncertainty and its potential misspecification in dynamic settings are a valuable tool of analysis in many disciplines. By generalizing previous analyses, we propose a tractable approach to incorporating broadly conceived responses to uncertainty. We illustrate our approach on some stylized stochastic environments. By design, these discrete time environments have revealing continuous time limits. Drawing on these illustrations, we construct recursive representations of intertemporal preferences that allow for penalized and smooth ambiguity aversion to subjective uncertainty. These recursive representations imply continuous time limiting Hamilton–Jacobi–Bellman equations for solving control problems in the presence of uncertainty.Published versio

    Comovements of Different Asset Classes During Market Stress

    Get PDF
    This paper assesses the linkages between the most important U.S.financial asset classes (stocks, bonds, T-bills and gold) during periods of financial turmoil. Our results have potentially important implications for strategic asset allocation and pension fund management. We use multivariate extreme value theory to estimate the exposure of one asset class to extreme movements in the other asset classes. By applying structural break tests to those measures we study to what extent linkages in extreme asset returns and volatilities are changing over time. Univariate results andch bivariate comovement results exhib significant breaks in the 1970s and 1980s corresponding to the turbulent times of e.g. the oil shocks, Volcker's presidency of the Fed or the stock market crash of 1987.Flight to quality, financial market distress, extreme value theory
    • 

    corecore