15 research outputs found

    KDM Security for Identity-Based Encryption: Constructions and Separations

    Get PDF
    For encryption schemes, key dependent message (KDM) security requires that ciphertexts preserve secrecy even when the messages to be encrypted depend on the secret keys. While KDM security has been extensively studied for public-key encryption (PKE), it receives much less attention in the setting of identity-based encryption (IBE). In this work, we focus on the KDM security for IBE. Our results are threefold. We first propose a generic approach to transfer the KDM security results (both positive and negative) from PKE to IBE. At the heart of our approach is a neat structure-mirroring PKE-to-IBE transformation based on indistinguishability obfuscation and puncturable PRFs, which establishes a connection between PKE and IBE in general. However, the obtained results are restricted to selective-identity sense. We then concentrate on results in adaptive-identity sense. On the positive side, we present two constructions that achieve KDM security in the adaptive-identity sense for the first time. One is built from identity-based hash proof system (IB-HPS) with homomorphic property, which indicates that the IBE schemes of Gentry (Eurocrypt 2006), Coron (DCC 2009), Chow et al. (CCS 2010) are actually KDM-secure in the single-key setting. The other is built from indistinguishability obfuscation and a new notion named puncturable unique signature, which is bounded KDM-secure in the single-key setting. On the negative side, we separate CPA/CCA security from nn-circular security (which is a prototypical case of KDM security) for IBE by giving a counterexample based on differing-inputs obfuscation and a new notion named puncturable IBE. We further propose a general framework for generating nn-circular security counterexamples in identity-based setting, which might be of independent interest

    Circular Security Is Complete for KDM Security

    Get PDF
    Circular security is the most elementary form of key-dependent message (KDM) security, which allows us to securely encrypt only a copy of secret key bits. In this work, we show that circular security is complete for KDM security in the sense that an encryption scheme satisfying this security notion can be transformed into one satisfying KDM security with respect to all functions computable by a-priori bounded-size circuits (bounded-KDM security). This result holds in the presence of any number of keys and in any of secret-key/public-key and CPA/CCA settings. Such a completeness result was previously shown by Applebaum (EUROCRYPT 2011) for KDM security with respect to projection functions (projection-KDM security) that allows us to securely encrypt both a copy and a negation of secret key bits. Besides amplifying the strength of KDM security, our transformation in fact can start from an encryption scheme satisfying circular security against CPA attacks and results in one satisfying bounded-KDM security against CCA attacks. This result improves the recent result by Kitagawa and Matsuda (TCC 2019) showing a CPA-to-CCA transformation for KDM secure public-key encryption schemes

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore