3,324 research outputs found

    SNeL: A Structured Neuro-Symbolic Language for Entity-Based Multimodal Scene Understanding

    Full text link
    In the evolving landscape of artificial intelligence, multimodal and Neuro-Symbolic paradigms stand at the forefront, with a particular emphasis on the identification and interaction with entities and their relations across diverse modalities. Addressing the need for complex querying and interaction in this context, we introduce SNeL (Structured Neuro-symbolic Language), a versatile query language designed to facilitate nuanced interactions with neural networks processing multimodal data. SNeL's expressive interface enables the construction of intricate queries, supporting logical and arithmetic operators, comparators, nesting, and more. This allows users to target specific entities, specify their properties, and limit results, thereby efficiently extracting information from a scene. By aligning high-level symbolic reasoning with low-level neural processing, SNeL effectively bridges the Neuro-Symbolic divide. The language's versatility extends to a variety of data types, including images, audio, and text, making it a powerful tool for multimodal scene understanding. Our evaluations demonstrate SNeL's potential to reshape the way we interact with complex neural networks, underscoring its efficacy in driving targeted information extraction and facilitating a deeper understanding of the rich semantics encapsulated in multimodal AI models

    Goal-oriented Dialogue Policy Learning from Failures

    Full text link
    Reinforcement learning methods have been used for learning dialogue policies. However, learning an effective dialogue policy frequently requires prohibitively many conversations. This is partly because of the sparse rewards in dialogues, and the very few successful dialogues in early learning phase. Hindsight experience replay (HER) enables learning from failures, but the vanilla HER is inapplicable to dialogue learning due to the implicit goals. In this work, we develop two complex HER methods providing different trade-offs between complexity and performance, and, for the first time, enabled HER-based dialogue policy learning. Experiments using a realistic user simulator show that our HER methods perform better than existing experience replay methods (as applied to deep Q-networks) in learning rate

    Improving Topic Segmentation by Injecting Discourse Dependencies

    Full text link
    Recent neural supervised topic segmentation models achieve distinguished superior effectiveness over unsupervised methods, with the availability of large-scale training corpora sampled from Wikipedia. These models may, however, suffer from limited robustness and transferability caused by exploiting simple linguistic cues for prediction, but overlooking more important inter-sentential topical consistency. To address this issue, we present a discourse-aware neural topic segmentation model with the injection of above-sentence discourse dependency structures to encourage the model make topic boundary prediction based more on the topical consistency between sentences. Our empirical study on English evaluation datasets shows that injecting above-sentence discourse structures to a neural topic segmenter with our proposed strategy can substantially improve its performances on intra-domain and out-of-domain data, with little increase of model's complexity.Comment: Accepted to the 3rd Workshop on Computational Approaches to Discourse (CODI-2022) at COLING 202
    • …
    corecore