4,062 research outputs found

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    Opportunistic and Context-aware Affect Sensing on Smartphones: The Concept, Challenges and Opportunities

    Full text link
    Opportunistic affect sensing offers unprecedented potential for capturing spontaneous affect ubiquitously, obviating biases inherent in the laboratory setting. Facial expression and voice are two major affective displays, however most affect sensing systems on smartphone avoid them due to extensive power requirement. Encouragingly, due to the recent advent of low-power DSP (Digital Signal Processing) co-processor and GPU (Graphics Processing Unit) technology, audio and video sensing are becoming more feasible. To properly evaluate opportunistically captured facial expression and voice, contextual information about the dynamic audio-visual stimuli needs to be inferred. This paper discusses recent advances of affect sensing on the smartphone and identifies the key barriers and potential solutions of implementing opportunistic and context-aware affect sensing on smartphone platforms

    Personalized multi-task attention for multimodal mental health detection and explanation

    Get PDF
    The unprecedented spread of smartphone usage and its various boarding sensors have been garnering increasing interest in automatic mental health detection. However, there are two major barriers to reliable mental health detection applications that can be adopted in real-life: (a)The outputs of the complex machine learning model are not explainable, which reduces the trust of users and thus hinders the application in real-life scenarios. (b)The sensor signal distribution discrepancy across individuals is a major barrier to accurate detection since each individual has their own characteristics. We propose an explainable mental health detection model. Spatial and temporal features of multiple sensory sequences are extracted and fused with different weights generated by the attention mechanism so that the discrepancy of contribution to classifiers across different modalities can be considered in the model. Through a series of experiments on real-life datasets, results show the effectiveness of our model compared to the existing approaches.This research is supported by the National Natural Science Foundation of China (No. 62077027), the Ministry of Science and Technology of the People's Republic of China(No. 2018YFC2002500), the Jilin Province Development and Reform Commission, China (No. 2019C053-1), the Education Department of Jilin Province, China (No. JJKH20200993K), the Department of Science and Technology of Jilin Province, China (No. 20200801002GH), and the European Union's Horizon 2020 FET Proactive project "WeNet-The Internet of us"(No. 823783)

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    IoT and Industry 4.0 technologies in Digital Manufacturing Transformation

    Get PDF
    The evolution of internet of things, cyber physical system, digital twin and artificial intelligence is stimulating the transformation of the product-centric processes toward smart control digital service-oriented ones. With the implementation of artificial intelligence and machine learning algorithms, IoT has accelerated the movement from connecting devices to the Internet to collecting and analyzing data by using sensors to extract data throughout the lifecycle of the product, in order to create value and knowledge from the huge amount of the collected data, such as the knowledge of the product performance and conditions. The importance of internet of things technology in manufacturing comes from its ability to collect real time data and extract valuable knowledge from these huge amount of data which can be supported through the implementation of smart IoT-based servitization framework which was presented in this research together with a 10-steps approach diagram. Moreover, literature review has been carried out to develop the research and deepen the knowledge in the field of IoT, CPS, DT and Artificial Intelligence, and then interviews with experts have been conducted to validate the contents, since DT is a quite new technology, so there are different points of view about certain concepts of this technology. The main scope and objective of this research is to allow organizational processes and companies to benefit form the value added information that can be achieved through the right implementation of advanced technologies such as IoT, DT, CPS, and artificial intelligence which can provide financial benefits to the manufacturing companies and competitive advantages to make them stand among the other competitors in the market. The effectiveness of such technologies can not only improve the financial benefits of the companies, but the workers\u2019 safety and health through the real time monitoring of the work environment. Here in this research the main aim is to present the right frameworks that can be used in the literature through companies and researchers to allow them to implement these technologies correctly in the boundaries of their businesses. In addition to that, the Smart factory concept, as introduced in the context of Industry 4.0, promotes the development of a new interconnected manufacturing environment where human operators cooperate with machines. While the role of the operator in the smart factory is substantially being rediscussed, the industrial approach towards safety and ergonomics still appears frequently outdated and inadequate. This research approaches such topic referring to the vibration risk, a well-known cause of work-related pathologies, and proposes an original methodology for mapping the risk exposure related to the performed activities. A miniaturized wearable device is employed to collect vibration data, and the obtained signals are segmented and processed in order to extract the significant features. An original machine learning classifier is then employed to recognize the worker\u2019s activity and evaluate the related exposure to vibration risks. Finally, the results obtained from the experimental analysis demonstrate feasibility and the effectiveness of the proposed methodology
    • …
    corecore