301 research outputs found

    A study of systems implementation languages for the POCCNET system

    Get PDF
    The results are presented of a study of systems implementation languages for the Payload Operations Control Center Network (POCCNET). Criteria are developed for evaluating the languages, and fifteen existing languages are evaluated on the basis of these criteria

    Development of an MSC language and compiler, volume 1

    Get PDF
    Higher order programming language and compiler for advanced computer software system to be used with manned space flights between 1972 and 198

    Threaded intermediate code /

    Get PDF

    Abstraction Raising in General-Purpose Compilers

    Get PDF

    The End of History? Using a Proof Assistant to Replace Language Design with Library Design

    Get PDF
    Functionality of software systems has exploded in part because of advances in programming-language support for packaging reusable functionality as libraries. Developers benefit from the uniformity that comes of exposing many interfaces in the same language, as opposed to stringing together hodgepodges of command-line tools. Domain-specific languages may be viewed as an evolution of the power of reusable interfaces, when those interfaces become so flexible as to deserve to be called programming languages. However, common approaches to domain-specific languages give up many of the hard-won advantages of library-building in a rich common language, and even the traditional approach poses significant challenges in learning new APIs. We suggest that instead of continuing to develop new domain-specific languages, our community should embrace library-based ecosystems within very expressive languages that mix programming and theorem proving. Our prototype framework Fiat, a library for the Coq proof assistant, turns languages into easily comprehensible libraries via the key idea of modularizing functionality and performance away from each other, the former via macros that desugar into higher-order logic and the latter via optimization scripts that derive efficient code from logical programs

    Advanced software techniques for space shuttle data management systems Final report

    Get PDF
    Airborne/spaceborn computer design and techniques for space shuttle data management system

    Towards A Quasi High Level Compiler Comparative and Attributive Model for OpenMP Programs

    Get PDF
    In order to understand the behavior of OpenMP programs, special tools and adaptive techniques are needed for performance analysis. However, these tools provide low level profile information at the assembly and functions boundaries via instrumentation at the binary or code level, which are very hard to interpret. Hence, this thesis proposes a new model for OpenMP enabled compilers that assesses the performance differences in well defined formulations by dividing OpenMP program conditions into four distinct states which account for all the possible cases that an OpenMP program can take. An improved version of the standard performance metrics is proposed: speedup, overhead and efficiency based on the model categorization that is state\u27s aware. Moreover, an algorithmic approach to find patterns between OpenMP compilers is proposed which is verified along with the model formulations experimentally. Finally, the thesis reveals the mathematical model behind the optimum performance for any OpenMP program

    Analysis of Performance-impacting Factors on Checkpointing Frameworks: The CPPC Case Study

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Computer Journal. The final authenticated version is available online at: https://doi.org/10.1093/comjnl/bxr018[Abstract] This paper focuses on the performance evaluation of Compiler for Portable Checkpointing (CPPC), a tool for the checkpointing of parallel message-passing applications. Its performance and the factors that impact it are transparently and rigorously identified and assessed. The tests were performed on a public supercomputing infrastructure, using a large number of very different applications and showing excellent results in terms of performance and effort required for integration into user codes. Statistical analysis techniques have been used to better approximate the performance of the tool. Quantitative and qualitative comparisons with other rollback-recovery approaches to fault tolerance are also included. All these data and comparisons are then discussed in an effort to extract meaningful conclusions about the state-of-the-art and future research trends in the rollback-recovery field.Minsiterio de Ciencia e Innovación; TIN2010-1673
    • …
    corecore