9,814 research outputs found

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    Be bold and take a challenge: could motivational strategies improve help-seeking?

    Get PDF
    Part of the motivation behind the evolution of learning environments is the idea of providing students with individualized instructional strategies that allow them to learn as much as possible. It has been suggested that the goals an individual holds create a framework or orientation from which they react and respond to events. There is a large evidence-based literature which supports the notion of mastery and performance approaches to learning and which identifies distinct behavioural patterns associated with each. However, it remains unclear how these orientations manifest themselves within the individual: an important question to address when applying goal theory to the development of a goal-sensitive learner model. This paper exposes some of these issues by describing two empirical studies. They approach the subject from different perspectives, one from the implementation of an affective computing system and the other a classroom-based study, have both encountered the same empirical and theoretical problems: the dispositional/situational aspect and the dimensionality of goal orientation

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    A fuzzy-based approach for classifying students' emotional states in online collaborative work

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Emotion awareness is becoming a key aspect in collaborative work at academia, enterprises and organizations that use collaborative group work in their activity. Due to pervasiveness of ICT's, most of collaboration can be performed through communication media channels such as discussion forums, social networks, etc. The emotive state of the users while they carry out their activity such as collaborative learning at Universities or project work at enterprises and organizations influences very much their performance and can actually determine the final learning or project outcome. Therefore, monitoring the users' emotive states and using that information for providing feedback and scaffolding is crucial. To this end, automated analysis over data collected from communication channels is a useful source. In this paper, we propose an approach to process such collected data in order to classify and assess emotional states of involved users and provide them feedback accordingly to their emotive states. In order to achieve this, a fuzzy approach is used to build the emotive classification system, which is fed with data from ANEW dictionary, whose words are bound to emotional weights and these, in turn, are used to map Fuzzy sets in our proposal. The proposed fuzzy-based system has been evaluated using real data from collaborative learning courses in an academic context.Peer ReviewedPostprint (author's final draft

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning

    Designing Adaptive Instruction for Teams: a Meta-Analysis

    Get PDF
    The goal of this research was the development of a practical architecture for the computer-based tutoring of teams. This article examines the relationship of team behaviors as antecedents to successful team performance and learning during adaptive instruction guided by Intelligent Tutoring Systems (ITSs). Adaptive instruction is a training or educational experience tailored by artificially-intelligent, computer-based tutors with the goal of optimizing learner outcomes (e.g., knowledge and skill acquisition, performance, enhanced retention, accelerated learning, or transfer of skills from instructional environments to work environments). The core contribution of this research was the identification of behavioral markers associated with the antecedents of team performance and learning thus enabling the development and refinement of teamwork models in ITS architectures. Teamwork focuses on the coordination, cooperation, and communication among individuals to achieve a shared goal. For ITSs to optimally tailor team instruction, tutors must have key insights about both the team and the learners on that team. To aid the modeling of teams, we examined the literature to evaluate the relationship of teamwork behaviors (e.g., communication, cooperation, coordination, cognition, leadership/coaching, and conflict) with team outcomes (learning, performance, satisfaction, and viability) as part of a large-scale meta-analysis of the ITS, team training, and team performance literature. While ITSs have been used infrequently to instruct teams, the goal of this meta-analysis make team tutoring more ubiquitous by: identifying significant relationships between team behaviors and effective performance and learning outcomes; developing instructional guidelines for team tutoring based on these relationships; and applying these team tutoring guidelines to the Generalized Intelligent Framework for Tutoring (GIFT), an open source architecture for authoring, delivering, managing, and evaluating adaptive instructional tools and methods. In doing this, we have designed a domain-independent framework for the adaptive instruction of teams
    • 

    corecore