328 research outputs found

    Recognizing sparse perfect elimination bipartite graphs

    Get PDF
    When applying Gaussian elimination to a sparse matrix, it is desirable to avoid turning zeros into non-zeros to preserve the sparsity. The class of perfect elimination bipartite graphs is closely related to square matrices that Gaussian elimination can be applied to without turning any zero into a non-zero. Existing literature on the recognition of this class and finding suitable pivots mainly focusses on time complexity. For nร—nn \times n matrices with m non-zero elements, the currently best known algorithm has a time complexity of O(n3/logโกn)O(n^3/\log n). However, when viewed from a practical perspective, the space complexity also deserves attention: it may not be worthwhile to look for a suitable set of pivots for a sparse matrix if this requires ฮฉ(n2)\Omega(n^2) space. We present two new algorithms for the recognition of sparse instances: one with a O(nm)O(n m) time complexity in ฮ˜(n2)\Theta(n^2) space and one with a O(m2)O(m^2) time complexity in ฮ˜(m)\Theta(m) space. Furthermore, if we allow only pivots on the diagonal, our second algorithm can easily be adapted to run in time O(nm)O(n m)

    Semi-strict chordality of digraphs

    Full text link
    Chordal graphs are important in algorithmic graph theory. Chordal digraphs are a digraph analogue of chordal graphs and have been a subject of active studies recently. In this paper we introduce the notion of semi-strict chordal digraphs which form a class strictly between chordal digraphs and chordal graphs. We characterize semi-strict chordal digraphs by forbidden subdigraphs within the cases of locally semicomplete digraphs and weakly quasi-transitive digraphs.Comment: 12 pages, 2 figures. arXiv admin note: text overlap with arXiv:2008.0356

    Master index: volumes 31โ€“40

    Get PDF

    Permanents, Pfaffian orientations, and even directed circuits

    Full text link
    Given a 0-1 square matrix A, when can some of the 1's be changed to -1's in such a way that the permanent of A equals the determinant of the modified matrix? When does a real square matrix have the property that every real matrix with the same sign pattern (that is, the corresponding entries either have the same sign or are both zero) is nonsingular? When is a hypergraph with n vertices and n hyperedges minimally nonbipartite? When does a bipartite graph have a "Pfaffian orientation"? Given a digraph, does it have no directed circuit of even length? Given a digraph, does it have a subdivision with no even directed circuit? It is known that all of the above problems are equivalent. We prove a structural characterization of the feasible instances, which implies a polynomial-time algorithm to solve all of the above problems. The structural characterization says, roughly speaking, that a bipartite graph has a Pfaffian orientation if and only if it can be obtained by piecing together (in a specified way) planar bipartite graphs and one sporadic nonplanar bipartite graph.Comment: 47 pages, published versio

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    ์ƒํƒœ๊ณ„์—์„œ์˜ ๊ฒฝ์Ÿ ๊ด€์ ์œผ๋กœ ๊ทธ๋ž˜ํ”„์™€ ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ์ˆ˜ํ•™๊ต์œก๊ณผ, 2023. 2. ๊น€์„œ๋ น.In this thesis, we study m-step competition graphs, (1, 2)-step competition graphs, phylogeny graphs, and competition-common enemy graphs (CCE graphs), which are primary variants of competition graphs. Cohen [11] introduced the notion of competition graph while studying predator-prey concepts in ecological food webs.An ecosystem is a biological community of interacting species and their physical environment. For each species in an ecosystem, there can be m conditions of the good environment by regarding lower and upper bounds on numerous dimensions such as soil, climate, temperature, etc, which may be represented by an m-dimensional rectangle, so-called an ecological niche. An elemental ecological truth is that two species compete if and only if their ecological niches overlap. Biologists often describe competitive relations among species cohabiting in a community by a food web that is a digraph whose vertices are the species and an arc goes from a predator to a prey. In this context, Cohen [11] defined the competition graph of a digraph as follows. The competition graph C(D) of a digraph D is defined to be a simple graph whose vertex set is the same as V (D) and which has an edge joining two distinct vertices u and v if and only if there are arcs (u, w) and (v, w) for some vertex w in D. Since Cohen introduced this definition, its variants such as m-step competition graphs, (i, j)-step competition graphs, phylogeny graphs, CCE graphs, p-competition graphs, and niche graphs have been introduced and studied. As part of these studies, we show that the connected triangle-free m-step competition graph on n vertices is a tree and completely characterize the digraphs of order n whose m-step competition graphs are star graphs for positive integers 2 โ‰ค m < n. We completely identify (1,2)-step competition graphs C_{1,2}(D) of orientations D of a complete k-partite graph for some k โ‰ฅ 3 when each partite set of D forms a clique in C_{1,2}(D). In addition, we show that the diameter of each component of C_{1,2}(D) is at most three and provide a sharp upper bound on the domination number of C_{1,2}(D) and give a sufficient condition for C_{1,2}(D) being an interval graph. On the other hand, we study on phylogeny graphs and CCE graphs of degreebounded acyclic digraphs. An acyclic digraph in which every vertex has indegree at most i and outdegree at most j is called an (i, j) digraph for some positive integers i and j. If each vertex of a (not necessarily acyclic) digraph D has indegree at most i and outdegree at most j, then D is called an hi, ji digraph. We give a sufficient condition on the size of hole of an underlying graph of an (i, 2) digraph D for the phylogeny graph of D being a chordal graph where D is an (i, 2) digraph. Moreover, we go further to completely characterize phylogeny graphs of (i, j) digraphs by listing the forbidden induced subgraphs. We completely identify the graphs with the least components among the CCE graphs of (2, 2) digraphs containing at most one cycle and exactly two isolated vertices, and their digraphs. Finally, we gives a sufficient condition for CCE graphs being interval graphs.์ด ๋…ผ๋ฌธ์—์„œ ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„์˜ ์ฃผ์š” ๋ณ€์ด๋“ค ์ค‘ m-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„, (1, 2)-step ๊ฒฝ์Ÿ ๊ทธ๋ž˜ํ”„, ๊ณ„ํ†ต ๊ทธ๋ž˜ํ”„, ๊ฒฝ์Ÿ๊ณต์ ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ–ˆ๋‹ค. Cohen [11]์€ ๋จน์ด์‚ฌ์Šฌ์—์„œ ํฌ์‹์ž-ํ”ผ์‹์ž ๊ฐœ๋…์„ ์—ฐ๊ตฌํ•˜๋ฉด์„œ ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„ ๊ฐœ๋…์„ ๊ณ ์•ˆํ–ˆ๋‹ค. ์ƒํƒœ๊ณ„๋Š” ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ์ข…๋“ค๊ณผ ๊ทธ๋“ค์˜ ๋ฌผ๋ฆฌ์  ํ™˜๊ฒฝ์˜ ์ƒ๋ฌผํ•™์  ์ฒด๊ณ„์ด๋‹ค. ์ƒํƒœ๊ณ„์˜ ๊ฐ ์ข…์— ๋Œ€ํ•ด์„œ, ํ† ์–‘, ๊ธฐํ›„, ์˜จ๋„ ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ฐจ์›์˜ ํ•˜๊ณ„ ๋ฐ ์ƒ๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ข‹์€ ํ™˜๊ฒฝ์„ m๊ฐœ์˜ ์กฐ๊ฑด๋“ค๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋Š”๋ฐ ์ด๋ฅผ ์ƒํƒœ์  ์ง€์œ„(ecological niche)๋ผ๊ณ  ํ•œ๋‹ค. ์ƒํƒœํ•™์  ๊ธฐ๋ณธ๊ฐ€์ •์€ ๋‘ ์ข…์ด ์ƒํƒœ์  ์ง€์œ„๊ฐ€ ๊ฒน์น˜๋ฉด ๊ฒฝ์Ÿํ•˜๊ณ (compete), ๊ฒฝ์Ÿํ•˜๋Š” ๋‘ ์ข…์€ ์ƒํƒœ์  ์ง€์œ„๊ฐ€ ๊ฒน์นœ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ํ”ํžˆ ์ƒ๋ฌผํ•™์ž๋“ค์€ ํ•œ ์ฒด์ œ์—์„œ ์„œ์‹ํ•˜๋Š” ์ข…๋“ค์˜ ๊ฒฝ์Ÿ์  ๊ด€๊ณ„๋ฅผ ๊ฐ ์ข…์€ ๊ผญ์ง“์ ์œผ๋กœ, ํฌ์‹์ž์—์„œ ํ”ผ์‹์ž์—๊ฒŒ๋Š” ์œ ํ–ฅ๋ณ€(arc)์„ ๊ทธ์–ด์„œ ๋จน์ด์‚ฌ์Šฌ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋งฅ๋ฝ์—์„œ Cohen [11]์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ฒฝ์Ÿ ๊ทธ๋ž˜ํ”„๋ฅผ ์ •์˜ํ–ˆ๋‹ค. ์œ ํ–ฅ๊ทธ๋ž˜ํ”„(digraph) D์˜ ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„(competition graph) C(D) ๋ž€ V (D)๋ฅผ ๊ผญ์ง“์  ์ง‘ํ•ฉ์œผ๋กœ ํ•˜๊ณ  ๋‘ ๊ผญ์ง“์  u, v๋ฅผ ์–‘ ๋์ ์œผ๋กœ ๊ฐ–๋Š” ๋ณ€์ด ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ๊ณผ ๊ผญ์ง“์  w๊ฐ€ ์กด์žฌํ•˜์—ฌ (u, w),(v, w)๊ฐ€ ๋ชจ๋‘ D์—์„œ ์œ ํ–ฅ๋ณ€์ด ๋˜๋Š” ๊ฒƒ์ด ๋™์น˜์ธ ๊ทธ๋ž˜ํ”„๋ฅผ ์˜๋ฏธํ•œ๋‹ค. Cohen์ด ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„์˜ ์ •์˜๋ฅผ ๋„์ž…ํ•œ ์ดํ›„๋กœ ๊ทธ ๋ณ€์ด๋“ค๋กœ m-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„(m-step competition graph), (i, j)-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„((i, j)-step competition graph), ๊ณ„ํ†ต๊ทธ๋ž˜ํ”„(phylogeny graph), ๊ฒฝ์Ÿ๊ณต์ ๊ทธ๋ž˜ํ”„(competition-common enemy graph), p-๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„(p-competition graph), ๊ทธ๋ฆฌ๊ณ  ์ง€์œ„๊ทธ๋ž˜ํ”„(niche graph)๊ฐ€ ๋„์ž…๋˜์—ˆ๊ณ  ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์˜ ์ผ๋ถ€๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์‚ผ๊ฐํ˜•์ด ์—†์ด ์—ฐ๊ฒฐ๋œ m-step ๊ฒฝ์Ÿ ๊ทธ๋ž˜ํ”„๋Š” ํŠธ๋ฆฌ(tree)์ž„์„ ๋ณด์˜€์œผ๋ฉฐ 2 โ‰ค m < n์„ ๋งŒ์กฑํ•˜๋Š” ์ •์ˆ˜ m, n์— ๋Œ€ํ•˜์—ฌ ๊ผญ์ง“์ ์˜ ๊ฐœ์ˆ˜๊ฐ€ n๊ฐœ์ด๊ณ  m-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„๊ฐ€ ๋ณ„๊ทธ๋ž˜ํ”„(star graph)๊ฐ€ ๋˜๋Š” ์œ ํ–ฅ๊ทธ๋ž˜ํ”„๋ฅผ ์™„๋ฒฝํ•˜๊ฒŒ ํŠน์ง•ํ™” ํ•˜์˜€๋‹ค. k โ‰ฅ 3์ด๊ณ  ๋ฐฉํ–ฅ์ง€์–ด์ง„ ์™„์ „ k-๋ถ„ํ•  ๊ทธ๋ž˜ํ”„(oriented complete k-partite graph)์˜ (1, 2)-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„ C_{1,2}(D)์—์„œ ๊ฐ ๋ถ„ํ• ์ด ์™„์ „ ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„๋ฅผ ์ด๋ฃฐ ๋•Œ, C_{1,2}(D)์„ ๋ชจ๋‘ ํŠน์ง•ํ™” ํ•˜์˜€๋‹ค. ๋˜ํ•œ, C_{1,2}(D)์˜ ๊ฐ ์„ฑ๋ถ„(component)์˜ ์ง€๋ฆ„(diameter)์˜ ๊ธธ์ด๊ฐ€ ์ตœ๋Œ€ 3์ด๋ฉฐ C_{1,2}(D)์˜ ์ง€๋ฐฐ์ˆ˜(domination number)์— ๋Œ€ํ•œ ์ƒ๊ณ„์™€ ์ตœ๋Œ“๊ฐ’์„ ๊ตฌํ•˜๊ณ  ๊ตฌ๊ฐ„๊ทธ๋ž˜ํ”„(interval graph)๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ ์ถฉ๋ถ„ ์กฐ๊ฑด์„ ๊ตฌํ•˜์˜€๋‹ค. ์ฐจ์ˆ˜๊ฐ€ ์ œํ•œ๋œ ์œ ํ–ฅํšŒ๋กœ๋ฅผ ๊ฐ–์ง€ ์•Š๋Š” ์œ ํ–ฅ๊ทธ๋ž˜ํ”„(degree-bounded acyclic digraph)์˜ ๊ณ„ํ†ต๊ทธ๋ž˜ํ”„์™€ ๊ฒฝ์Ÿ๊ณต์ ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•ด์„œ๋„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์–‘์˜ ์ •์ˆ˜๋“ค i, j์— ๋Œ€ํ•˜์—ฌ (i, j) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„๋ž€ ๊ฐ ๊ผญ์ง“์ ์˜ ๋‚ด์ฐจ์ˆ˜๋Š” ์ตœ๋Œ€ i, ์™ธ์ฐจ์ˆ˜๋Š” ์ตœ๋Œ€ j์ธ ์œ ํ–ฅํšŒ๋กœ ๊ฐ–์ง€ ์•Š๋Š” ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์ด๋‹ค. ๋งŒ์•ฝ ์œ ํ–ฅ๊ทธ๋ž˜ํ”„ D์— ๊ฐ ๊ผญ์ง“์ ์ด ๋‚ด์ฐจ์ˆ˜๊ฐ€ ์ตœ๋Œ€ i, ์™ธ์ฐจ์ˆ˜๊ฐ€ ์ตœ๋Œ€ j ์ธ ๊ฒฝ์šฐ์— D๋ฅผ hi, ji ์œ ํ–ฅ๊ทธ๋ž˜ํ”„๋ผ ํ•œ๋‹ค. D๊ฐ€ (i, 2) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์ผ ๋•Œ, D์˜ ๊ณ„ํ†ต๊ทธ๋ž˜ํ”„๊ฐ€ ํ˜„๊ทธ๋ž˜ํ”„(chordal graph)๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ D์˜ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ์–ป์–ด์ง€๋Š” ๊ทธ๋ž˜ํ”„(underlying graph)์—์„œ ๊ธธ์ด๊ฐ€ 4์ด์ƒ์ธ ํšŒ๋กœ(hole)์˜ ๊ธธ์ด์— ๋Œ€ํ•œ ์ถฉ๋ถ„์กฐ๊ฑด์„ ๊ตฌํ•˜์˜€๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ (i, j) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ณ„ํ†ต๊ทธ๋ž˜ํ”„์—์„œ ๋‚˜์˜ฌ ์ˆ˜ ์—†๋Š” ์ƒ์„ฑ ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„(forbidden induced subgraph)๋ฅผ ํŠน์ง•ํ™” ํ•˜์˜€๋‹ค. (2, 2) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„ D์˜ ๊ฒฝ์Ÿ๊ณต์ ๊ทธ๋ž˜ํ”„ CCE(D)๊ฐ€ 2๊ฐœ์˜ ๊ณ ๋ฆฝ์ (isolated vertex)๊ณผ ์ตœ๋Œ€ 1๊ฐœ์˜ ํšŒ๋กœ๋ฅผ ๊ฐ–์œผ๋ฉด์„œ ๊ฐ€์žฅ ์ ์€ ์„ฑ๋ถ„์„ ๊ฐ–๋Š” ๊ฒฝ์šฐ์ผ ๋•Œ์˜ ๊ตฌ์กฐ๋ฅผ ๊ทœ๋ช…ํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, CCE(D)๊ฐ€ ๊ตฌ๊ฐ„๊ทธ๋ž˜ํ”„๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ ์„ฑ๋ถ„์˜ ๊ฐœ์ˆ˜์— ๋Œ€ํ•œ ์ถฉ๋ถ„์กฐ๊ฑด์„ ๊ตฌํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Graph theory terminology and basic concepts 1 1.2 Competition graphs and its variants 6 1.2.1 A brief background of competition graphs 6 1.2.2 Variants of competition graphs 8 1.2.3 m-step competition graphs 10 1.2.4 (1, 2)-step competition graphs 13 1.2.5 Phylogeny graphs 14 1.2.6 CCE graphs 16 1.3 A preview of the thesis 17 2 Digraphs whose m-step competition graphs are trees 19 2.1 The triangle-free m-step competition graphs 23 2.2 Digraphs whose m-step competition graphs are trees 29 2.3 The digraphs whose m-step competition graphs are star graphs 38 3 On (1, 2)-step competition graphs of multipartite tournaments 47 3.1 Preliminaries 48 3.2 C1,2(D) with a non-clique partite set of D 51 3.3 C1,2(D) without a non-clique partite set of D 66 3.4 C1,2(D) as a complete graph 74 3.5 Diameters and domination numbers of C1,2(D) 79 3.6 Disconnected (1, 2)-step competition graphs 82 3.7 Interval (1, 2)-step competition graphs 84 4 The forbidden induced subgraphs of (i, j) phylogeny graphs 90 4.1 A necessary condition for an (i, 2) phylogeny graph being chordal 91 4.2 Forbidden subgraphs for phylogeny graphs of degree bounded digraphs 99 5 On CCE graphs of (2, 2) digraphs 122 5.1 CCE graphs of h2, 2i digraphs 128 5.2 CCE graphs of (2, 2) digraphs 134 Abstract (in Korean) 168 Acknowledgement (in Korean) 170๋ฐ•

    Hole์˜ ๊ด€์ ์—์„œ ๊ทธ๋ž˜ํ”„์™€ ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‚ฌ๋ฒ”๋Œ€ํ•™ ์ˆ˜ํ•™๊ต์œก๊ณผ,2019. 8. ๊น€์„œ๋ น.์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์™€ ๊ทธ๋ž˜ํ”„์˜ ํ™€์˜ ๊ด€์ ์—์„œ ๊ณ„ํ†ต๋ฐœ์ƒ ๊ทธ๋ž˜ํ”„์™€ ๊ทธ๋ž˜ํ”„์˜ ์‚ผ๊ฐํ™”์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌํ•œ๋‹ค. ๊ธธ์ด 4 ์ด์ƒ์ธ ์œ ๋„๋œ ์‹ธ์ดํด์„ ํ™€์ด๋ผ ํ•˜๊ณ  ํ™€์ด ์—†๋Š” ๊ทธ๋ž˜ํ”„๋ฅผ ์‚ผ๊ฐํ™”๋œ ๊ทธ๋ž˜ํ”„๋ผ ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์‹ธ์ดํด์„ ๊ฐ–์ง€ ์•Š๋Š” ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ณ„ํ†ต๋ฐœ์ƒ ๊ทธ๋ž˜ํ”„๊ฐ€ ์‚ผ๊ฐํ™”๋œ ๊ทธ๋ž˜ํ”„์ธ์ง€ ํŒ์ •ํ•˜๊ณ , ์ฃผ์–ด์ง„ ๊ทธ๋ž˜ํ”„๋ฅผ ์‚ผ๊ฐํ™”ํ•˜์—ฌ ํด๋ฆญ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฐจ์ด ๋‚˜์ง€ ์•Š๋Š” ๊ทธ๋ž˜ํ”„๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์ฐพ๊ณ ์ž ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์—ฐ๊ตฌ ๋‚ด์šฉ์— ๋”ฐ๋ผ ๋‘ ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋‰œ๋‹ค. ๋จผ์ € (1,i)(1, i) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์™€ (i,1)(i, 1) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ณ„ํ†ต๋ฐœ์ƒ ๊ทธ๋ž˜ํ”„๋ฅผ ์™„์ „ํ•˜๊ฒŒ ํŠน์ง•ํ™”ํ•˜๊ณ , (2,j)(2, j) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„ DD์˜ ๋ชจ๋“  ์œ ํ–ฅ๋ณ€์—์„œ ๋ฐฉํ–ฅ์„ ์ œ๊ฑฐํ•œ ๊ทธ๋ž˜ํ”„๊ฐ€ ์‚ผ๊ฐํ™”๋œ ๊ทธ๋ž˜ํ”„์ด๋ฉด, DD์˜ ๊ณ„ํ†ต๋ฐœ์ƒ ๊ทธ๋ž˜ํ”„ ์—ญ์‹œ ์‚ผ๊ฐํ™”๋œ ๊ทธ๋ž˜ํ”„์ž„์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ์ ์€ ์ˆ˜์˜ ์‚ผ๊ฐํ˜•์„ ๊ฐ–๋Š” ์—ฐ๊ฒฐ๋œ ๊ทธ๋ž˜ํ”„์˜ ๊ณ„ํ†ต๋ฐœ์ƒ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•œ ์ •๋ฆฌ๋ฅผ ํ™•์žฅํ•˜์—ฌ ๋งŽ์€ ์ˆ˜์˜ ์‚ผ๊ฐํ˜•์„ ํฌํ•จํ•œ ์—ฐ๊ฒฐ๋œ ๊ทธ๋ž˜ํ”„์˜ ๊ณ„ํ†ต๋ฐœ์ƒ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋‹ค๋ฅธ ํ•œ ํŽธ ๊ทธ๋ž˜ํ”„ GG์˜ ๋น„์‚ผ๊ฐํ™” ์ง€์ˆ˜ i(G)i(G)์— ๋Œ€ํ•˜์—ฌ ฯ‰(Gโˆ—)โˆ’ฯ‰(G)โ‰คi(G)\omega(G^*)-\omega(G) \le i(G)๋ฅผ ๋งŒ์กฑํ•˜๋Š” GG์˜ ์‚ผ๊ฐํ™”๋œ ๊ทธ๋ž˜ํ”„ Gโˆ—G^*๊ฐ€ ์กด์žฌํ•จ์„ ๋ณด์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ๋„๊ตฌ๋กœ ์ด์šฉํ•˜์—ฌ NC property๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๊ทธ๋ž˜ํ”„๊ฐ€ Hadwiger ์ถ”์ธก๊ณผ Erd\H{o}s-Faber-Lov\'{a}sz ์ถ”์ธก์„ ๋งŒ์กฑํ•จ์„ ์ฆ๋ช…ํ•˜๊ณ , ๋น„์‚ผ๊ฐํ™” ์ง€์ˆ˜๊ฐ€ ์œ ๊ณ„์ธ ๊ทธ๋ž˜ํ”„๋“ค์ด linearly ฯ‡\chi-bounded์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค.This thesis aims at studying phylogeny graphs and graph completions in the aspect of holes of graphs or digraphs. A hole of a graph is an induced cycle of length at least four and a graph is chordal if it does not contain a hole. Specifically, we determine whether the phylogeny graphs of acyclic digraphs are chordal or not and find a way of chordalizing a graph without increasing the size of maximum clique not so much. In this vein, the thesis is divided into two parts. In the first part, we completely characterize phylogeny graphs of (1,i)(1, i) digraphs and (i,1)(i,1) digraphs, respectively, for a positive integer ii. Then, we show that the phylogeny graph of a (2,j)(2,j) digraph DD is chordal if the underlying graph of DD is chordal for any positive integer jj. In addition, we extend the existing theorems computing phylogeny numbers of connected graph with a small number of triangles to results computing phylogeny numbers of connected graphs with many triangles. In the second part, we present a minimal chordal supergraph Gโˆ—G^* of a graph GG satisfying the inequality ฯ‰(Gโˆ—)โˆ’ฯ‰(G)โ‰คi(G)\omega(G^*) - \omega(G) \le i(G) for the non-chordality index i(G)i(G) of GG. Using the above chordal supergraph as a tool, we prove that the family of graphs satisfying the NC property satisfies the Hadwiger conjecture and the Erd\H{o}s-Faber-Lov\'{a}sz Conjecture, and the family of graphs with bounded non-chordality indices is linearly ฯ‡\chi-bounded.Contents Abstract i 1 Introduction 1 1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Phylogeny graphs . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Graph colorings and chordal completions . . . . . . . . 14 2 Phylogeny graphs 19 2.1 Chordal phylogeny graphs . . . . . . . . . . . . . . . . . . . . 19 2.1.1 (1,j) phylogeny graphs and (i,1) phylogeny graphs . . 20 2.1.2 (2,j) phylogeny graphs . . . . . . . . . . . . . . . . . . 28 2.2 The phylogeny number and the triangles and the diamonds of a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 A new minimal chordal completion 61 3.1 Graphs with the NC property . . . . . . . . . . . . . . . . . . 64 3.2 The Erdห os-Faber-Lovรกsz Conjecture . . . . . . . . . . . . . . . 73 3.3 A minimal chordal completion of a graph . . . . . . . . . . . . 80 3.3.1 Non-chordality indices of graphs . . . . . . . . . . . . . 80 3.3.2 Making a local chordalization really local . . . . . . . . 89 3.4 New ฯ‡-bounded classes . . . . . . . . . . . . . . . . . . . . . . 97 Abstract (in Korean) 107Docto
    • โ€ฆ
    corecore