2,648 research outputs found

    Sound for Fantasy and Freedom

    Get PDF
    Sound is an integral part of our everyday lives. Sound tells us about physical events in the environ- ment, and we use our voices to share ideas and emotions through sound. When navigating the world on a day-to-day basis, most of us use a balanced mix of stimuli from our eyes, ears and other senses to get along. We do this totally naturally and without effort. In the design of computer game experiences, traditionally, most attention has been given to vision rather than the balanced mix of stimuli from our eyes, ears and other senses most of us use to navigate the world on a day to day basis. The risk is that this emphasis neglects types of interaction with the game needed to create an immersive experience. This chapter summarizes the relationship between sound properties, GameFlow and immersive experience and discusses two projects in which Interactive Institute, Sonic Studio has balanced perceptual stimuli and game mechanics to inspire and create new game concepts that liberate users and their imagination

    earGram Actors: an interactive audiovisual system based on social behavior

    Get PDF
    In multi-agent systems, local interactions among system components following relatively simple rules often result in complex overall systemic behavior. Complex behavioral and morphological patterns have been used to generate and organize audiovisual systems with artistic purposes. In this work, we propose to use the Actor model of social interactions to drive a concatenative synthesis engine called earGram in real time. The Actor model was originally developed to explore the emergence of complex visual patterns. On the other hand, earGram was originally developed to facilitate the creative exploration of concatenative sound synthesis. The integrated audiovisual system allows a human performer to interact with the system dynamics while receiving visual and auditory feedback. The interaction happens indirectly by disturbing the rules governing the social relationships amongst the actors, which results in a wide range of dynamic spatiotemporal patterns. A performer thus improvises within the behavioural scope of the system while evaluating the apparent connections between parameter values and actual complexity of the system output

    Generative theatre of totality

    Get PDF
    Generative art can be used for creating complex multisensory and multimedia experiences within predetermined aesthetic parameters, characteristic of the performing arts and remarkably suitable to address Moholy-Nagy's Theatre of Totality vision. In generative artworks the artist will usually take on the role of an experience framework designer, and the system evolves freely within that framework and its defined aesthetic boundaries. Most generative art impacts visual arts, music and literature, but there does not seem to be any relevant work exploring the cross-medium potential, and one could confidently state that most generative art outcomes are abstract and visual, or audio. It is the goal of this article to propose a model for the creation of generative performances within the Theatre of Totality's scope, derived from stochastic Lindenmayer systems, where mapping techniques are proposed to address the seven variables addressed by Moholy-Nagy: light, space, plane, form, motion, sound and man ("man" is replaced in this article with "human", except where quoting from the author), with all the inherent complexities

    Developing a flexible and expressive realtime polyphonic wave terrain synthesis instrument based on a visual and multidimensional methodology

    Get PDF
    The Jitter extended library for Max/MSP is distributed with a gamut of tools for the generation, processing, storage, and visual display of multidimensional data structures. With additional support for a wide range of media types, and the interaction between these mediums, the environment presents a perfect working ground for Wave Terrain Synthesis. This research details the practical development of a realtime Wave Terrain Synthesis instrument within the Max/MSP programming environment utilizing the Jitter extended library. Various graphical processing routines are explored in relation to their potential use for Wave Terrain Synthesis

    Cybernetics in Music

    Get PDF
    This thesis examines the use of cybernetics (the science of systems) in music, through the tracing of an obscured history. The author postulates that cybernetic music may be thought of as genera of music in its own right, whose practitioners share a common ontology and set of working practices that distinctly differ from traditional approaches to composing electronic music. Ultimately, this critical examination of cybernetics in music provides the framework for a series of original compositions and the foundation of the further study of cybernetic music

    Audio Virology and Affect Contagion in the Times of Preemptive Power and Sonic Futurism: The Sonic Warfare of Fatima Al Qadiri

    Get PDF
    This project examines the State’s use of sound technologies in particular to conjure affects facilitative of the maintenance and control of human bodies and political activities. In tension with this current, it will also study the subversion of sonic war machinery by cultural workers and musicians in the production of transnational political solidarities against the state militarization/securitization of life and preemption/commodification of death–a socio-economic paradigm fed by the (neo)colonial underbellies of capitalist modernity, from the Transatlantic Slave Trade to the colonization and military exploitation of the ‘Middle East’

    Non-Standard Sound Synthesis with Dynamic Models

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This Thesis proposes three main objectives: (i) to provide the concept of a new generalized non-standard synthesis model that would provide the framework for incorporating other non-standard synthesis approaches; (ii) to explore dynamic sound modeling through the application of new non-standard synthesis techniques and procedures; and (iii) to experiment with dynamic sound synthesis for the creation of novel sound objects. In order to achieve these objectives, this Thesis introduces a new paradigm for non-standard synthesis that is based in the algorithmic assemblage of minute wave segments to form sound waveforms. This paradigm is called Extended Waveform Segment Synthesis (EWSS) and incorporates a hierarchy of algorithmic models for the generation of microsound structures. The concepts of EWSS are illustrated with the development and presentation of a novel non-standard synthesis system, the Dynamic Waveform Segment Synthesis (DWSS). DWSS features and combines a variety of algorithmic models for direct synthesis generation: list generation and permutation, tendency masks, trigonometric functions, stochastic functions, chaotic functions and grammars. The core mechanism of DWSS is based in an extended application of Cellular Automata. The potential of the synthetic capabilities of DWSS is explored in a series of Case Studies where a number of sound object were generated revealing (i) the capabilities of the system to generate sound morphologies belonging to other non-standard synthesis approaches and, (ii) the capabilities of the system of generating novel sound objects with dynamic morphologies. The introduction of EWSS and DWSS is preceded by an extensive and critical overview on the concepts of microsound synthesis, algorithmic composition, the two cultures of computer music, the heretical approach in composition, non- standard synthesis and sonic emergence along with the thorough examination of algorithmic models and their application in sound synthesis and electroacoustic composition. This Thesis also proposes (i) a new definition for “algorithmic composition”, (ii) the term “totalistic algorithmic composition”, and (iii) four discrete aspects of non-standard synthesis

    Endemic Machines:Acoustic adaptation and evolutionary agents

    Get PDF

    The Biometric Evolution of Sound and Space

    Get PDF
    Auditoria in the late 20th and 21st centuries have evolved into a series of spatial conventions that are an established and accepted norm. The relationship between space and music now exists in a decoupled condition, and music is no longer reliant on volumetric and material conditions to define its form (Glantz 2000). This thesis looks at a series of novel approaches to investigate how the links between music and space can be reconnected though evolutionary computation, parametric modelling, virtual acoustics and biometric sensing. The thesis describes in detail the experiments undertaken in developing methodologies in linking music, space and the body. The thesis will show how it is possible to develop new form finding and musical generation tools that allow new room shapes and acoustic measures to inform how new acoustic and musical forms can be developed unconsciously and objectively by a listener, in response to sound and site
    corecore