79 research outputs found

    Toward Self-Healing Multitier Services

    Get PDF
    Are self-healing database-centric multitier services utopia or just a hard puzzle? We argue for the latter and aim to identify the missing pieces of this puzzle. We advocate robust and scalable learning-based approaches to self-healing that we expect to work well for a large class of multitier services. We identify performance-availability problems (PAPs) as the most relevant target for self-healing, and argue that PAPs are best addressed macroscopically, outside the realm of individual tiers. Finally, we lay out a research agenda for learning-based approaches to self-healing, to enable wider deployment of self-healing multi-tier services

    Effizienz in Cluster-Datenbanksystemen - Dynamische und Arbeitslastberücksichtigende Skalierung und Allokation

    Get PDF
    Database systems have been vital in all forms of data processing for a long time. In recent years, the amount of processed data has been growing dramatically, even in small projects. Nevertheless, database management systems tend to be static in terms of size and performance which makes scaling a difficult and expensive task. Because of performance and especially cost advantages more and more installed systems have a shared nothing cluster architecture. Due to the massive parallelism of the hardware programming paradigms from high performance computing are translated into data processing. Database research struggles to keep up with this trend. A key feature of traditional database systems is to provide transparent access to the stored data. This introduces data dependencies and increases system complexity and inter process communication. Therefore, many developers are exchanging this feature for a better scalability. However, explicitly managing the data distribution and data flow requires a deep understanding of the distributed system and reduces the possibilities for automatic and autonomic optimization. In this thesis we present an approach for database system scaling and allocation that features good scalability although it keeps the data distribution transparent. The first part of this thesis analyzes the challenges and opportunities for self-scaling database management systems in cluster environments. Scalability is a major concern of Internet based applications. Access peaks that overload the application are a financial risk. Therefore, systems are usually configured to be able to process peaks at any given moment. As a result, server systems often have a very low utilization. In distributed systems the efficiency can be increased by adapting the number of nodes to the current workload. We propose a processing model and an architecture that allows efficient self-scaling of cluster database systems. In the second part we consider different allocation approaches. To increase the efficiency we present a workload-aware, query-centric model. The approach is formalized; optimal and heuristic algorithms are presented. The algorithms optimize the data distribution for local query execution and balance the workload according to the query history. We present different query classification schemes for different forms of partitioning. The approach is evaluated for OLTP and OLAP style workloads. It is shown that variants of the approach scale well for both fields of application. The third part of the thesis considers benchmarks for large, adaptive systems. First, we present a data generator for cloud-sized applications. Due to its architecture the data generator can easily be extended and configured. A key feature is the high degree of parallelism that makes linear speedup for arbitrary numbers of nodes possible. To simulate systems with user interaction, we have analyzed a productive online e-learning management system. Based on our findings, we present a model for workload generation that considers the temporal dependency of user interaction.Datenbanksysteme sind seit langem die Grundlage für alle Arten von Informationsverarbeitung. In den letzten Jahren ist das Datenaufkommen selbst in kleinen Projekten dramatisch angestiegen. Dennoch sind viele Datenbanksysteme statisch in Bezug auf ihre Kapazität und Verarbeitungsgeschwindigkeit was die Skalierung aufwendig und teuer macht. Aufgrund der guten Geschwindigkeit und vor allem aus Kostengründen haben immer mehr Systeme eine Shared-Nothing-Architektur, bestehen also aus unabhängigen, lose gekoppelten Rechnerknoten. Da dieses Konstruktionsprinzip einen sehr hohen Grad an Parallelität aufweist, werden zunehmend Programmierparadigmen aus dem klassischen Hochleistungsrechen für die Informationsverarbeitung eingesetzt. Dieser Trend stellt die Datenbankforschung vor große Herausforderungen. Eine der grundlegenden Eigenschaften traditioneller Datenbanksysteme ist der transparente Zugriff zu den gespeicherten Daten, der es dem Nutzer erlaubt unabhängig von der internen Organisation auf die Daten zuzugreifen. Die resultierende Unabhängigkeit führt zu Abhängigkeiten in den Daten und erhöht die Komplexität der Systeme und der Kommunikation zwischen einzelnen Prozessen. Daher wird Transparenz von vielen Entwicklern für eine bessere Skalierbarkeit geopfert. Diese Entscheidung führt dazu, dass der die Datenorganisation und der Datenfluss explizit behandelt werden muss, was die Möglichkeiten für eine automatische und autonome Optimierung des Systems einschränkt. Der in dieser Arbeit vorgestellte Ansatz zur Skalierung und Allokation erhält den transparenten Zugriff und zeichnet sich dabei durch seine vollständige Automatisierbarkeit und sehr gute Skalierbarkeit aus. Im ersten Teil dieser Dissertation werden die Herausforderungen und Chancen für selbst-skalierende Datenbankmanagementsysteme behandelt, die in auf Computerclustern betrieben werden. Gute Skalierbarkeit ist eine notwendige Eigenschaft für Anwendungen, die über das Internet zugreifbar sind. Lastspitzen im Zugriff, die die Anwendung überladen stellen ein finanzielles Risiko dar. Deshalb werden Systeme so konfiguriert, dass sie eventuelle Lastspitzen zu jedem Zeitpunkt verarbeiten können. Das führt meist zu einer im Schnitt sehr geringen Auslastung der unterliegenden Systeme. Eine Möglichkeit dieser Ineffizienz entgegen zu steuern ist es die Anzahl der verwendeten Rechnerknoten an die vorliegende Last anzupassen. In dieser Dissertation werden ein Modell und eine Architektur für die Anfrageverarbeitung vorgestellt, mit denen es möglich ist Datenbanksysteme auf Clusterrechnern einfach und effizient zu skalieren. Im zweiten Teil der Arbeit werden verschieden Möglichkeiten für die Datenverteilung behandelt. Um die Effizienz zu steigern wird ein Modell verwendet, das die Lastverteilung im Anfragestrom berücksichtigt. Der Ansatz ist formalisiert und optimale und heuristische Lösungen werden präsentiert. Die vorgestellten Algorithmen optimieren die Datenverteilung für eine lokale Ausführung aller Anfragen und balancieren die Last auf den Rechnerknoten. Es werden unterschiedliche Arten der Anfrageklassifizierung vorgestellt, die zu verschiedenen Arten von Partitionierung führen. Der Ansatz wird sowohl für Onlinetransaktionsverarbeitung, als auch Onlinedatenanalyse evaluiert. Die Evaluierung zeigt, dass der Ansatz für beide Felder sehr gut skaliert. Im letzten Teil der Arbeit werden verschiedene Techniken für die Leistungsmessung von großen, adaptiven Systemen präsentiert. Zunächst wird ein Datengenerierungsansatz gezeigt, der es ermöglicht sehr große Datenmengen völlig parallel zu erzeugen. Um die Benutzerinteraktion von Onlinesystemen zu simulieren wurde ein produktives E-learningsystem analysiert. Anhand der Analyse wurde ein Modell für die Generierung von Arbeitslasten erstellt, das die zeitlichen Abhängigkeiten von Benutzerinteraktion berücksichtigt

    Adaptive Monitoring of Complex Software Systems using Management Metrics

    Get PDF
    Software systems supporting networked, transaction-oriented services are large and complex; they comprise a multitude of inter-dependent layers and components, and they implement many dynamic optimization mechanisms. In addition, these systems are subject to workload that is hard to predict. These factors make monitoring these systems as well as performing problem determination challenging and costly. In this thesis we tackle these challenges with the goal of lowering the cost and improving the effectiveness of monitoring and problem determination by reducing the dependence on human operators. Specifically, this thesis presents and demonstrates the effectiveness of an efficient, automated monitoring approach which enables detection of errors and failures, and which assists in localizing faults. Software systems expose various types of monitoring data; this thesis focuses on the use of management metrics to monitor a system's health. We devise a system modeling approach which entails modeling stable, statistical correlations among management metrics; these correlations characterize a system's normal behaviour This approach allows a system model to be built automatically and efficiently using the monitoring data alone. In order to control the monitoring overhead, and yet allow a system's health to be assessed reliably, we design an adaptive monitoring approach. This adaptive capability builds on the flexible nature of our system modeling approach, which allows the set of monitored metrics to be altered at runtime. We develop methods to automatically select management metrics to collect at the minimal monitoring level, without any domain knowledge. In addition, we devise an automated fault localization approach, which leverages the ability of the monitoring system to analyze individual metrics. Using a realistic, multi-tier software system, including different applications based on Java Enterprise Edition and industrial-strength products, we evaluate our system modeling approach. We show that stable metric correlations exist in complex software systems and that many of these correlations can be modeled using simple, efficient techniques. We investigate the effect of the collection of management metrics on system performance. We show that the monitoring overhead can be high and thus needs to be controlled. We employ fault injection experiments to evaluate the effectiveness of our adaptive monitoring and fault localization approach. We demonstrate that our approach is cost-effective, has high fault coverage and, in the majority of the cases studied, provides pertinent diagnosis information. The main contribution of this work is to show how to monitor complex software systems and determine problems in them automatically and efficiently. Our solution approach has wide applicability and the techniques we use are simple and yet effective. Our work suggests that the cost of monitoring software systems is not necessarily a function of their complexity, providing hope that the health of increasingly large and complex systems can be tracked with a limited amount of human resources and without sacrificing much system performance
    corecore