37 research outputs found

    A Wireless, High-Voltage Compliant, and Energy-Efficient Visual Intracortical Microstimulator

    Get PDF
    RÉSUMÉ L’objectif général de ce projet de recherche est la conception, la mise en oeuvre et la validation d’une interface sans fil intracorticale implantable en technologie CMOS avancée pour aider les personnes ayant une déficience visuelle. Les défis majeurs de cette recherche sont de répondre à la conformité à haute tension nécessaire à travers l’interface d’électrode-tissu (IET), augmenter la flexibilité dans la microstimulation et la surveillance multicanale, minimiser le budget de puissance pour un dispositif biomédical implantable, réduire la taille de l’implant et améliorer le taux de transmission sans fil des données. Par conséquent, nous présentons dans cette thèse un système de microstimulation intracorticale multi-puce basée sur une nouvelle architecture pour la transmission des données sans fil et le transfert de l’énergie se servant de couplages inductifs et capacitifs. Une première puce, un générateur de stimuli (SG) éconergétique, et une autre qui est un amplificateur de haute impédance se connectant au réseau de microélectrodes de l’étage de sortie. Les 4 canaux de générateurs de stimuli produisent des impulsions rectangulaires, demi-sinus (DS), plateau-sinus (PS) et autres types d’impulsions de courant à haut rendement énergétique. Le SG comporte un contrôleur de faible puissance, des convertisseurs numérique-analogiques (DAC) opérant en mode courant, générateurs multi-forme d’ondes et miroirs de courants alimentés sous 1.2 et 3.3V se servant pour l’interface entre les deux technologies utilisées. Le courant de stimulation du SG varie entre 2.32 et 220μA pour chaque canal. La deuxième puce (pilote de microélectrodes (MED)), une interface entre le SG et de l’arrangement de microélectrodes (MEA), fournit quatre niveaux différents de courant avec la valeur maximale de 400μA par entrée et 100μA par canal de sortie simultanément pour 8 à 16 sites de stimulation à travers les microélectrodes, connectés soit en configuration bipolaire ou monopolaire. Cette étage de sortie est hautement configurable et capable de délivrer une tension élevée pour satisfaire les conditions de l’interface à travers l’impédance de IET par rapport aux systèmes précédemment rapportés. Les valeurs nominales de plus grandes tensions d’alimentation sont de ±10V. La sortie de tension mesurée est conformément 10V/phase (anodique ou cathodique) pour les tensions d’alimentation spécifiées. L’incrémentation de tensions d’alimentation à ±13V permet de produire un courant de stimulation de 220μA par canal de sortie permettant d’élever la tension de sortie jusqu’au 20V par phase. Cet étage de sortie regroupe un commutateur haute tension pour interfacer une matrice des miroirs de courant (3.3V /20V), un registre à décalage de 32-bits à entrée sérielle, sortie parallèle, et un circuit dédié pour bloquer des états interdits.----------ABSTRACT The general objective of this research project is the design, implementation and validation of an implantable wireless intracortical interface in advanced CMOS technology to aid the visually impaired people. The major challenges in this research are to meet the required highvoltage compliance across electrode-tissue interface (ETI), increase lexibility in multichannel microstimulation and monitoring, minimize power budget for an implantable biomedical device, reduce the implant size, and enhance the data rate in wireless transmission. Therefore, we present in this thesis a multi-chip intracortical microstimulation system based on a novel architecture for wireless data and power transmission comprising inductive and capacitive couplings. The first chip is an energy-efficient stimuli generator (SG) and the second one is a highimpedance microelectrode array driver output-stage. The 4-channel stimuli-generator produces rectangular, half-sine (HS), plateau-sine (PS), and other types of energy-efficient current pulse. The SG is featured with low-power controller, current mode source- and sinkdigital- to-analog converters (DACs), multi-waveform generators, and 1.2V/3.3V interface current mirrors. The stimulation current per channel of the SG ranges from 2.32 to 220μA per channel. The second chip (microelectrode driver (MED)), an interface between the SG and the microelectrode array (MEA), supplies four different current levels with the maximum value of 400μA per input and 100μA per output channel. These currents can be delivered simultaneously to 8 to 16 stimulation sites through microelectrodes, connected either in bipolar or monopolar configuration. This output stage is highly-configurable and able to deliver higher compliance voltage across ETI impedance compared to previously reported designs. The nominal values of largest supply voltages are ±10V. The measured output compliance voltage is 10V/phase (anodic or cathodic) for the specified supply voltages. Increment of supply voltages to ±13V allows 220μA stimulation current per output channel enhancing the output compliance voltage up to 20V per phase. This output-stage is featured with a high-voltage switch-matrix, 3.3V/20V current mirrors, an on-chip 32-bit serial-in parallel-out shift register, and the forbidden state logic building blocks. The SG and MED chips have been designed and fabricated in IBM 0.13μm CMOS and Teledyne DALSA 0.8μm 5V/20V CMOS/DMOS technologies with silicon areas occupied by them 1.75 x 1.75mm2 and 4 x 4mm2 respectively. The measured DC power budgets consumed by low-and mid-voltage microchips are 2.56 and 2.1mW consecutively

    Data analysis of retinal recordings from multi-electrode arrays under in situ electrical stimulation

    Get PDF
    The development of retinal implants has become an important field of study in recent years, with increasing numbers of people falling victim to legal or physical blindness as a result of retinal damage. Important weaknesses in current retinal implants include a lack of the resolution necessary to give a patient a viable level of visual acuity, question marks over the amount of power and energy required to deliver adequate stimulation, and the removal of eye movements from the analysis of the visual scene. This thesis documents investigations by the author into a new CMOS stimulation and imaging chip with the potential to overcome these difficulties. An overview is given of the testing and characterisation of the componments incorporated in the device to mimic the normal functioning of the human retina. Its application to in situ experimental studies of frog retina is also described, as well as how the data gathered from these experiments enables the optimisation of the geometry of the electrode array through which the device will interface with the retina. Such optimisation is important as the deposit of excess electrical charge and energy can lead to detrimental medical side effects. Avoidance of such side effects is crucial to the realisation of the next generation of retinal implants

    Shifting gazes with visual prostheses: Long-term hand-camera coordination

    Get PDF
    Purpose: Prosthetic vision is young, and many aspects of its use remain unexplored. Hand-camera coordination, the prosthetic correlate of hand-eye coordination, relies heavily on how the camera is aligned with the eye. It is unknown whether users of prostheses can adapt to using misaligned cameras, or whether requirements for proper alignment remain constant over time. Methods: Four blind subjects implanted with Argus II retinal prostheses participated in this study. Each subject attempted to touch a single 4°–7° white target that was randomly located on an otherwise black touchscreen in a target localization task. Touch response accuracy was used to determine the necessary adjustment to eye-camera alignment, the optimal camera alignment position (OCAP). Subjects attended over 100 sessions across up to 5.3 years. S1–S3 were given misaligned cameras for over 1 year. Adaptation was measured through changes in localization errors. Outside that period of intentional misalignment, cameras were aligned to maximize localization accuracy. During the final year, localization tasks were performed in alternation with eye tracking. S2–S4 also participated in 1-day experiments with simultaneous eye tracking and target localization. Results: Subjects were not able to significantly reduce localization error when cameras were misaligned. When trying to maximize localization accuracy, necessary OCAPs changed significantly over time. OCAP trend directions within days and trial runs matched changes between the beginnings of days and runs. Changes between the end of a day or run and the beginning of the next tended to point in the opposite direction of the previous trend, indicating a reset of OCAP changes. Changes in eye orientations correlated significantly with changes in OCAPs. Eye-orientation trends displayed the same reset behavior between days and runs as OCAPs. Simultaneous eye tracking and localization showed agreement between eye-orientation and localization-error trend directions. Adjusting camera alignment with eye-tracking data slowed changes in localization errors. Conclusions: Users of current visual prostheses cannot passively adapt to camera misalignments. OCAPs are not constant with time. Prosthesis users who desire maximum pointing accuracy will require regular camera realignments. Camera alignments based on eye tracking can reduce both transient and long-term changes in localization that are related to eye movements

    Electronic bidirectional interfaces to the peripheral nervous system for prosthetic applications

    Get PDF
    The research presented in this thesis concerns the field of bioelectronics, in particular the work has been focused on the development of special electronic devices for neural signal acquisition and Peripheral Nervous System (PNS) stimulation. The final aim of the project in which this work is involved is in fact the realization of a prosthetic hand controlled using neural signals. The commercially available prosthesis are based on Electromyographic (EMG) signals, their use implies unnatural movements for the patient that needs a special training to develop the control capabilities over the mechanical limb. The proposed approach offers a number of advantages compared to the traditional prosthesis, first because the signals used are the same used to control the biologic limb, allowing a more comfortable solution for the patient that gets closer to feel the robotic hand as a natural extension of his/her body. Secondly, placing temperature and pressure sensors on the limb surface, it is possible to trasduce such information in an electrical current that, injected into the PNS, can restore the sensory feedback in amputees. The final goal of this research is the development of a fully implantable device able to perform a bidirectional communication between the robotic hand and the patient. Due to small area, low noise and low power constraints, the only possible way to reach this aim is the design of a full custom Integrated Circuit (IC). However a preliminary evaluation of the key design features, such as neural signal amplitudes and frequencies as well as stimulation shape parameters, is necessary in order to define clearly and precisely the design specifications. A low-cost and short implementation time device is then needed for this aim, the Components Off The Shelf (COTS) approach seems to be the best solution for this purpose. A Printed Circuit Board (PCB) with discrete components has been designed, developed and tested, the information extracted by the test results have been used to guide the IC design. The generation of electrical signals in biological cells, such as neural spikes, is possible thanks to ions that move across the cell membrane. In many applications it is important, not only to record the spikes, but also to measure these small currents in order to understand which electro-chemical processes are involved in the signal generation and to have a direct measurement of the ion channels involved in the reaction. Ion currents, in fact, play a key role in several physiological processes, in neural signal generation, but also in the maintenance of heartbeat and in muscle contraction. For this purpose, a system level implementation of a Read out circuit for ion channel current detection has been developed

    Electronic bidirectional interfaces to the peripheral nervous system for prosthetic applications

    Get PDF
    The research presented in this thesis concerns the field of bioelectronics, in particular the work has been focused on the development of special electronic devices for neural signal acquisition and Peripheral Nervous System (PNS) stimulation. The final aim of the project in which this work is involved is in fact the realization of a prosthetic hand controlled using neural signals. The commercially available prosthesis are based on Electromyographic (EMG) signals, their use implies unnatural movements for the patient that needs a special training to develop the control capabilities over the mechanical limb. The proposed approach offers a number of advantages compared to the traditional prosthesis, first because the signals used are the same used to control the biologic limb, allowing a more comfortable solution for the patient that gets closer to feel the robotic hand as a natural extension of his/her body. Secondly, placing temperature and pressure sensors on the limb surface, it is possible to trasduce such information in an electrical current that, injected into the PNS, can restore the sensory feedback in amputees. The final goal of this research is the development of a fully implantable device able to perform a bidirectional communication between the robotic hand and the patient. Due to small area, low noise and low power constraints, the only possible way to reach this aim is the design of a full custom Integrated Circuit (IC). However a preliminary evaluation of the key design features, such as neural signal amplitudes and frequencies as well as stimulation shape parameters, is necessary in order to define clearly and precisely the design specifications. A low-cost and short implementation time device is then needed for this aim, the Components Off The Shelf (COTS) approach seems to be the best solution for this purpose. A Printed Circuit Board (PCB) with discrete components has been designed, developed and tested, the information extracted by the test results have been used to guide the IC design. The generation of electrical signals in biological cells, such as neural spikes, is possible thanks to ions that move across the cell membrane. In many applications it is important, not only to record the spikes, but also to measure these small currents in order to understand which electro-chemical processes are involved in the signal generation and to have a direct measurement of the ion channels involved in the reaction. Ion currents, in fact, play a key role in several physiological processes, in neural signal generation, but also in the maintenance of heartbeat and in muscle contraction. For this purpose, a system level implementation of a Read out circuit for ion channel current detection has been developed

    Glucose-powered neuroelectronics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-164).A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As implantable electronic devices become increasingly prevalent in scientific research and in the diagnosis, management, and treatment of human disease, there is correspondingly increasing demand for devices with unlimited functional lifetimes that integrate seamlessly with their hosts in these two ways. This thesis presents significant progress toward establishing the feasibility of one such system: A brain-machine interface powered by a bioimplantable fuel cell that harvests energy from extracellular glucose in the cerebrospinal fluid surrounding the brain. The first part of this thesis describes a set of biomimetic algorithms and low-power circuit architectures for decoding electrical signals from ensembles of neurons in the brain. The decoders are intended for use in the context of neural rehabilitation, to provide paralyzed or otherwise disabled patients with instantaneous, natural, thought-based control of robotic prosthetic limbs and other external devices. This thesis presents a detailed discussion of the decoding algorithms, descriptions of the low-power analog and digital circuit architectures used to implement the decoders, and results validating their performance when applied to decode real neural data. A major constraint on brain-implanted electronic devices is the requirement that they consume and dissipate very little power, so as not to damage surrounding brain tissue. The systems described here address that constraint, computing in the style of biological neural networks, and using arithmetic-free, purely logical primitives to establish universal computing architectures for neural decoding. The second part of this thesis describes the development of an implantable fuel cell powered by extracellular glucose at concentrations such as those found in the cerebrospinal fluid surrounding the brain. The theoretical foundations, details of design and fabrication, mechanical and electrochemical characterization, as well as in vitro performance data for the fuel cell are presented.by Benjamin Isaac Rapoport.Ph.D

    An implantable micro-system for neural prosthesis control and sensory feedback restoration in amputees

    Get PDF
    In this work, the prototype of an electronic bi-directional interface between the Peripheral Nervous System (PNS) and a neuro-controlled hand prosthesis is presented. The system is composed of two Integrated Circuits (ICs): a standard CMOS device for neural recording and a High Voltage (HV) CMOS device for neural stimulation. The integrated circuits have been realized in two different 0.35μm CMOS processes available fromAustriaMicroSystem(AMS). The recoding IC incorporates 8 channels each including the analog front-end and the A/D conversion based on a sigma delta architecture. It has a total area of 16.8mm2 and exhibits an overall power consumption of 27.2mW. The neural stimulation IC is able to provide biphasic current pulses to stimulate 8 electrodes independently. A voltage booster generates a 17V voltage supply in order to guarantee the programmed stimulation current even in case of high impedances at the electrode-tissue interface in the order of tens of k­. The stimulation patterns, generated by a 5-bit current DAC, are programmable in terms of amplitude, frequency and pulse width. Due to the huge capacitors of the implemented voltage boosters, the stimulation IC has a wider area of 18.6mm2. In addition, a maximum power consumption of 29mW was measured. Successful in-vivo experiments with rats having a TIME electrode implanted in the sciatic nerve were carried out, showing the capability of recording neural signals in the tens of microvolts, with a global noise of 7μVrms , and to selectively elicit the tibial and plantarmuscles using different active sites of the electrode. In order to get a completely implantable interface, a biocompatible and biostable package was designed. It hosts the developed ICs with the minimal electronics required for their proper operation. The package consists of an alumina tube closed at both extremities by two ceramic caps hermetically sealed on it. Moreover, the two caps serve as substrate for the hermetic feedthroughs to enable the device powering and data exchange with the external digital controller implemented on a Field-Programmable Gate Array (FPGA) board. The package has an outer diameter of 7mm and a total length of 26mm. In addition, a humidity and temperature sensor was also included inside the package to allow future hermeticity and life-time estimation tests. Moreover, a wireless, wearable and non-invasive EEG recording system is proposed in order to improve the control over the artificial limb,by integrating the neural signals recorded from the PNS with those directly acquired from the brain. To first investigate the system requirements, a Component-Off-The-Shelf (COTS) device was designed. It includes a low-power 8- channel acquisition module and a Bluetooth (BT) transceiver to transmit the acquired data to a remote platform. It was designed with the aimof creating a cheap and user-friendly system that can be easily interfaced with the nowadays widely spread smartphones or tablets by means of a mobile-based application. The presented system, validated through in-vivo experiments, allows EEG signals recording at different sample rates and with a maximum bandwidth of 524Hz. It was realized on a 19cm2 custom PCB with a maximum power consumption of 270mW

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity
    corecore