1,376 research outputs found

    Marine Biotechnology: A New Vision and Strategy for Europe

    Get PDF
    Marine Board-ESF The Marine Board provides a pan-European platform for its member organisations to develop common priorities, to advance marine research, and to bridge the gap between science and policy in order to meet future marine science challenges and opportunities. The Marine Board was established in 1995 to facilitate enhanced cooperation between European marine science organisations (both research institutes and research funding agencies) towards the development of a common vision on the research priorities and strategies for marine science in Europe. In 2010, the Marine Board represents 30 Member Organisations from 19 countries. The Marine Board provides the essential components for transferring knowledge for leadership in marine research in Europe. Adopting a strategic role, the Marine Board serves its Member Organisations by providing a forum within which marine research policy advice to national agencies and to the European Commission is developed, with the objective of promoting the establishment of the European Marine Research Area

    Revealing the beauty potential of grape stems: harnessing phenolic compounds for cosmetics

    Get PDF
    Grape stems have emerged as a promising natural ingredient in the cosmetics industry due to their abundance of phenolic compounds, known for their antioxidant and anti-inflammatory properties. These compounds have shown great potential in promoting skin health, fighting signs of aging, and shielding against environmental stressors. With high concentrations of resveratrol, flavonoids, and tannins, grape stems have garnered attention from cosmetic scientists. Research has indicated that phenolic compounds extracted from grape stems possess potent antioxidant abilities, effectively combating free radicals that accelerate aging. Moreover, these compounds have demonstrated the capacity to shield the skin from UV damage, boost collagen production, and enhance skin elasticity. Cosmetic formulations incorporating grape stem extracts have displayed promising results in addressing various skin concerns, including reducing wrinkles, fine lines, and age spots, leading to a more youthful appearance. Additionally, grape stem extracts have exhibited anti-inflammatory properties, soothing irritated skin and diminishing redness. Exploring the potential of grape stem phenolic compounds for cosmetics paves the way for sustainable and natural beauty products. By harnessing the beauty benefits of grape stems, the cosmetics industry can provide effective and eco-friendly solutions for consumers seeking natural alternatives. Ongoing research holds the promise of innovative grape stem-based formulations that could revolutionize the cosmetics market, fully unlocking the potential of these extraordinary botanical treasures.This work was supported by National Funds from the FCT-Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020. All authors acknowledge Mesosystem S.A. for the conditions for the elaboration of this paper.info:eu-repo/semantics/publishedVersio

    Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview

    Get PDF
    As the world develops and population increases, so too does the demand for higher agricultural output with lower resources. Plant biostimulants appear to be one of the more prominent sustainable solutions, given their natural origin and their potential to substitute conventional methods in agriculture. Classified based on their source rather than constitution, biostimulants such as humic substances (HS), protein hydrolysates (PHs), seaweed extracts (SWE) and microorganisms have a proven potential in improving plant growth, increasing crop production and quality, as well as ameliorating stress effects. However, the multi-molecular nature and varying composition of commercially available biostimulants presents challenges when attempting to elucidate their underlying mechanisms. While most research has focused on the broad effects of biostimulants in crops, recent studies at the molecular level have started to unravel the pathways triggered by certain products at the cellular and gene level. Understanding the molecular influences involved could lead to further refinement of these treatments. This review comprises the most recent findings regarding the use of biostimulants in plants, with particular focus on reports of their molecular influence

    Improving photosynthetic efficiency and plant growth in controlled environments: the role of light quality, biostimulant application and ionising radiation

    Get PDF
    The possibility of growing higher plants, especially crops, in controlled environments allows reducing the variability of plant responses to the multiple stress occurring in the field and increasing the primary production. Among variables implicated in plant development and physiology, light represents a driver. Therefore, selecting specific wavelengths of visible light to obtain appropriate light quality regimes may significantly improve photosynthesis, biomass production, and secondary metabolites synthesis, resulting in an enrichment of food quality (in terms of nutraceutical compounds and antioxidants) and plant tolerance against abiotic stresses. The use of the light quality as 'natural fertiliser' alone or combined with other eco-friendly practices such as the employment of biostimulants could be a promising solution to enhance crop productivity preserving the overexploitation of soil and reducing the overuse of agrochemicals. The light spectrum modulation within growth chambers or vertical farms may find proper applications in the cultivation of crops in extreme environments on the Earth, such as hot or cold deserts or in the Space environment. This latter is highly unhospitable because it is characterised by many unfavourable ecological factors, including microgravity and cosmic radiations. In particular, ionising radiation is one of the significant constraints preventing plant growth and survival in Space. In the Bioregenerative Life Support Systems (BLSSs), conceived to sustain human life in Space, plants will have a crucial role in food production and air regeneration and CO2 removal. Thus, in the next future, the challenge to grow plants in Space must consider studying the effect of Space ionising radiation not only on humans and animals but also on plants. The PhD project is focused on the role of light quality in regulating the photosynthetic machinery of higher plants in controlled environments. In particular, it has been explored if and how specific light wavelengths during growth may modify plant physiological behaviour and phytochemical production in response to biostimulant application or exposure to ionising radiation. Among different variables affecting plant growth, biostimulants application was selected with the specific aim to improve the overall plant physiological performance in terms of primary and secondary metabolism in the context of sustainable agricultural practices. The ionising radiation was chosen as a space stress environmental factor in the view of experiments finalised to plant cultivation in Space. The experiments were carried out on widely consumed crops such as tomato, spinach, soybean and chard, considered important functional foods. Plants were grown in dedicated growth chambers under specific temperature, relative humidity, photoperiod, and light intensity condition, modulating the light spectrum to obtain specific light regimes promoting the photosynthetic performance. The outcomes of these experiments were utilised in the subsequent trials to test how light quality combined with ionising radiation or growth-promoting agents, i.e., biostimulants, may modify photosynthesis and antioxidant production. A downscaling investigative approach was adopted to analyse plant responses at different scale levels from cells and tissues to the whole organism. The outcomes of this research may have implications not only for developing sustainable protocols for indoor cultivation but also for plant growth in extreme environments on Earth and Space, such as the orbiting stations

    Growth Promotion and Biocontrol Activity of Endophytic Streptomyces spp.

    Get PDF
    There has been many recent studies on the use of microbial antagonists to control diseases incited by soilborne and airborne plant pathogenic bacteria and fungi, in an attempt to replace existing methods of chemical control and avoid extensive use of fungicides, which often lead to resistance in plant pathogens. In agriculture, plant growth-promoting and biocontrol microorganisms have emerged as safe alternatives to chemical pesticides. Streptomyces spp. and their metabolites may have great potential as excellent agents for controlling various fungal and bacterial phytopathogens. Streptomycetes belong to the rhizosoil microbial communities and are efficient colonizers of plant tissues, from roots to the aerial parts. They are active producers of antibiotics and volatile organic compounds, both in soil and in planta, and this feature is helpful for identifying active antagonists of plant pathogens and can be used in several cropping systems as biocontrol agents. Additionally, their ability to promote plant growth has been demonstrated in a number of crops, thus inspiring the wide application of streptomycetes as biofertilizers to increase plant productivity. The present review highlights Streptomyces spp.-mediated functional traits, such as enhancement of plant growth and biocontrol of phytopathogens

    Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes

    Get PDF
    There has been many recent studies on the use of microbial antagonists to control diseases incited by soilborne and airborne plant pathogenic bacteria and fungi, in an attempt to replace existing methods of chemical control and avoid extensive use of fungicides, which often lead to resistance in plant pathogens. In agriculture, plant growth-promoting and biocontrol microorganisms have emerged as safe alternatives to chemical pesticides. Streptomyces spp. and their metabolites may have great potential as excellent agents for controlling various fungal and bacterial phytopathogens. Streptomycetes belong to the rhizosoil microbial communities and are efficient colonizers of plant tissues, from roots to the aerial parts. They are active producers of antibiotics and volatile organic compounds, both in soil and in planta, and this feature is helpful for identifying active antagonists of plant pathogens and can be used in several cropping systems as biocontrol agents. Additionally, their ability to promote plant growth has been demonstrated in a number of crops, thus inspiring the wide application of streptomycetes as biofertilizers to increase plant productivity. The present review highlights Streptomyces spp.-mediated functional traits, such as enhancement of plant growth and biocontrol of phytopathogens
    • …
    corecore