53 research outputs found

    Tournaments with kernels by monochromatic paths

    Get PDF
    In this paper we prove the existence of kernels by monochromatic paths in m-coloured tournaments in which every cyclic tournament of order 3 is atmost 2-coloured in addition to other restrictions on the colouring ofcertain subdigraphs. We point out that in all previous results on kernelsby monochromatic paths in arc coloured tournaments, certain smallsubstructures are required to be monochromatic or monochromatic with atmost one exception, whereas here we allow up to three colours in two smallsubstructures

    k-colored kernels

    Get PDF
    We study kk-colored kernels in mm-colored digraphs. An mm-colored digraph DD has kk-colored kernel if there exists a subset KK of its vertices such that (i) from every vertex v∉Kv\notin K there exists an at most kk-colored directed path from vv to a vertex of KK and (ii) for every u,v∈Ku,v\in K there does not exist an at most kk-colored directed path between them. In this paper, we prove that for every integer k≥2k\geq 2 there exists a (k+1)% (k+1)-colored digraph DD without kk-colored kernel and if every directed cycle of an mm-colored digraph is monochromatic, then it has a kk-colored kernel for every positive integer k.k. We obtain the following results for some generalizations of tournaments: (i) mm-colored quasi-transitive and 3-quasi-transitive digraphs have a kk% -colored kernel for every k≥3k\geq 3 and k≥4,k\geq 4, respectively (we conjecture that every mm-colored ll-quasi-transitive digraph has a kk% -colored kernel for every k≥l+1)k\geq l+1), and (ii) mm-colored locally in-tournament (out-tournament, respectively) digraphs have a kk-colored kernel provided that every arc belongs to a directed cycle and every directed cycle is at most kk-colored

    Kernels in edge-coloured orientations of nearly complete graphs

    Get PDF
    AbstractWe call the digraph D an orientation of a graph G if D is obtained from G by the orientation of each edge of G in exactly one of the two possible directions. The digraph D is an m-coloured digraph if the arcs of D are coloured with m-colours.Let D be an m-coloured digraph. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.A set N⊆V(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions: (i) for every pair of different vertices u,v∈N there is no monochromatic directed path between them and (ii) for every vertex x∈V(D)-N there is a vertex y∈N such that there is an xy-monochromatic directed path.In this paper we obtain sufficient conditions for an m-coloured orientation of a graph obtained from Kn by deletion of the arcs of K1,r (0⩽r⩽n-1) to have a kernel by monochromatic
    • …
    corecore