55 research outputs found

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed

    Evolutionary multi-objective optimization in uncertain environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Multiagent systems: games and learning from structures

    Get PDF
    Multiple agents have become increasingly utilized in various fields for both physical robots and software agents, such as search and rescue robots, automated driving, auctions and electronic commerce agents, and so on. In multiagent domains, agents interact and coadapt with other agents. Each agent's choice of policy depends on the others' joint policy to achieve the best available performance. During this process, the environment evolves and is no longer stationary, where each agent adapts to proceed towards its target. Each micro-level step in time may present a different learning problem which needs to be addressed. However, in this non-stationary environment, a holistic phenomenon forms along with the rational strategies of all players; we define this phenomenon as structural properties. In our research, we present the importance of analyzing the structural properties, and how to extract the structural properties in multiagent environments. According to the agents' objectives, a multiagent environment can be classified as self-interested, cooperative, or competitive. We examine the structure from these three general multiagent environments: self-interested random graphical game playing, distributed cooperative team playing, and competitive group survival. In each scenario, we analyze the structure in each environmental setting, and demonstrate the structure learned as a comprehensive representation: structure of players' action influence, structure of constraints in teamwork communication, and structure of inter-connections among strategies. This structure represents macro-level knowledge arising in a multiagent system, and provides critical, holistic information for each problem domain. Last, we present some open issues and point toward future research

    Automated Reverse Engineering of Agent Behaviors

    Get PDF

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Uncertainty-wise software anti-patterns detection: A possibilistic evolutionary machine learning approach

    Get PDF
    Context: Code smells (a.k.a. anti-patterns) are manifestations of poor design solutions that can deteriorate software maintainability and evolution. Research gap: Existing works did not take into account the issue of uncertain class labels, which is an important inherent characteristic of the smells detection problem. More precisely, two human experts may have different degrees of uncertainty about the smelliness of a particular software class not only for the smell detection task but also for the smell type identification one. Unluckily, existing approaches usually reject and/or ignore uncertain data that correspond to software classes (i.e. dataset instances) with uncertain labels. Throwing away and/or disregarding the uncertainty factor could considerably degrade the detection/identification process effectiveness. From a solution approach viewpoint, there is no work in the literature that proposed a method that is able to detect and/or identify code smells while preserving the uncertainty aspect. Objective: The main goal of our research work is to handle the uncertainty factor, issued from human experts, in detecting and/or identifying code smells by proposing an evolutionary approach that is able to deal with anti-patterns classification with uncertain labels. Method: We suggest Bi-ADIPOK, as an effective search-based tool that is capable to tackle the previously mentioned challenge for both detection and identification cases. The proposed method corresponds to an EA (Evolutionary Algorithm) that optimizes a set of detectors encoded as PK-NNs (Possibilistic K-nearest neighbors) based on a bi-level hierarchy, in which the upper level role consists on finding the optimal PK-NNs parameters, while the lower level one is to generate the PK-NNs. A newly fitness function has been proposed fitness function PomAURPC-OVA_dist (Possibilistic modified Area Under Recall Precision Curve One-Versus-All_distance, abbreviated PAURPC_d in this paper). Bi-ADIPOK is able to deal with label uncertainty using some concepts stemming from the Possibility Theory. Furthermore, the PomAURPC-OVA_dist is capable to process the uncertainty issue even with imbalanced data. We notice that Bi-ADIPOK is first built and then validated using a possibilistic base of smell examples that simulates and mimics the subjectivity of software engineers opinions. Results: The statistical analysis of the obtained results on a set of comparative experiments with respect to four relevant state-of-the-art methods shows the merits of our proposal. The obtained detection results demonstrate that, for the uncertain environment, the PomAURPC-OVA_dist of Bi-ADIPOK ranges between 0.902 and 0.932 and its IAC lies between 0.9108 and 0.9407, while for the certain environment, the PomAURPC-OVA_dist lies between 0.928 and 0.955 and the IAC ranges between 0.9477 and 0.9622. Similarly, the identification results, for the uncertain environment, indicate that the PomAURPC-OVA_dist of Bi-ADIPOK varies between 0.8576 and 0.9273 and its IAC is between 0.8693 and 0.9318. For the certain environment, the PomAURPC-OVA_dist lies between 0.8613 and 0.9351 and the IAC values are between 0.8672 and 0.9476. With uncertain data, Bi-ADIPOK can find 35% more code smells than the second best approach (i.e., BLOP). Furthermore, Bi-ADIPOK has succeeded to reduce the number of false alarms (i.e., misclassified smelly instances) by 12%. In addition, our proposed approach can identify 43% more smell types than BLOP and reduces the number of false alarms by 32%. The same results have been obtained for the certain environment, demonstrating Bi-ADIPOK's ability to deal with such environment
    corecore