3,966 research outputs found

    A Solution Merging Heuristic for the Steiner Problem in Graphs Using Tree Decompositions

    Full text link
    Fixed parameter tractable algorithms for bounded treewidth are known to exist for a wide class of graph optimization problems. While most research in this area has been focused on exact algorithms, it is hard to find decompositions of treewidth sufficiently small to make these al- gorithms fast enough for practical use. Consequently, tree decomposition based algorithms have limited applicability to large scale optimization. However, by first reducing the input graph so that a small width tree decomposition can be found, we can harness the power of tree decomposi- tion based techniques in a heuristic algorithm, usable on graphs of much larger treewidth than would be tractable to solve exactly. We propose a solution merging heuristic to the Steiner Tree Problem that applies this idea. Standard local search heuristics provide a natural way to generate subgraphs with lower treewidth than the original instance, and subse- quently we extract an improved solution by solving the instance induced by this subgraph. As such the fixed parameter tractable algorithm be- comes an efficient tool for our solution merging heuristic. For a large class of sparse benchmark instances the algorithm is able to find small width tree decompositions on the union of generated solutions. Subsequently it can often improve on the generated solutions fast

    Speeding-up Dynamic Programming with Representative Sets - An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions

    Full text link
    Dynamic programming on tree decompositions is a frequently used approach to solve otherwise intractable problems on instances of small treewidth. In recent work by Bodlaender et al., it was shown that for many connectivity problems, there exist algorithms that use time, linear in the number of vertices, and single exponential in the width of the tree decomposition that is used. The central idea is that it suffices to compute representative sets, and these can be computed efficiently with help of Gaussian elimination. In this paper, we give an experimental evaluation of this technique for the Steiner Tree problem. A comparison of the classic dynamic programming algorithm and the improved dynamic programming algorithm that employs the table reduction shows that the new approach gives significant improvements on the running time of the algorithm and the size of the tables computed by the dynamic programming algorithm, and thus that the rank based approach from Bodlaender et al. does not only give significant theoretical improvements but also is a viable approach in a practical setting, and showcases the potential of exploiting the idea of representative sets for speeding up dynamic programming algorithms

    Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

    Get PDF
    We present an implementation of a linear-time approximation scheme for the traveling salesman problem on planar graphs with edge weights. We observe that the theoretical algorithm involves constants that are too large for practical use. Our implementation, which is not subject to the theoretical algorithm\u27s guarantee, can quickly find good tours in very large planar graphs

    Genetic Algorithm with Optimal Recombination for the Asymmetric Travelling Salesman Problem

    Full text link
    We propose a new genetic algorithm with optimal recombination for the asymmetric instances of travelling salesman problem. The algorithm incorporates several new features that contribute to its effectiveness: (i) Optimal recombination problem is solved within crossover operator. (ii) A new mutation operator performs a random jump within 3-opt or 4-opt neighborhood. (iii) Greedy constructive heuristic of W.Zhang and 3-opt local search heuristic are used to generate the initial population. A computational experiment on TSPLIB instances shows that the proposed algorithm yields competitive results to other well-known memetic algorithms for asymmetric travelling salesman problem.Comment: Proc. of The 11th International Conference on Large-Scale Scientific Computations (LSSC-17), June 5 - 9, 2017, Sozopol, Bulgari

    Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the plane

    Full text link
    Given a set PP of nn points with their pairwise distances, the traveling salesman problem (TSP) asks for a shortest tour that visits each point exactly once. A TSP instance is rectilinear when the points lie in the plane and the distance considered between two points is the l1l_1 distance. In this paper, a fixed-parameter algorithm for the Rectilinear TSP is presented and relies on techniques for solving TSP on bounded-treewidth graphs. It proves that the problem can be solved in O(nh7h)O\left(nh7^h\right) where h≤nh \leq n denotes the number of horizontal lines containing the points of PP. The same technique can be directly applied to the problem of finding a shortest rectilinear Steiner tree that interconnects the points of PP providing a O(nh5h)O\left(nh5^h\right) time complexity. Both bounds improve over the best time bounds known for these problems.Comment: 24 pages, 13 figures, 6 table
    • …
    corecore