34,085 research outputs found

    Factors and Connected Factors in Tough Graphs with High Isolated Toughness

    Full text link
    In this paper, we show that every 11-tough graph with order and isolated toughness at least r+1r+1 has a factor whose degrees are rr, except for at most one vertex with degree r+1r+1. Using this result, we conclude that every 33-tough graph with order and isolated toughness at least r+1r+1 has a connected factor whose degrees lie in the set {r,r+1}\{r,r+1\}, where r3r\ge 3. Also, we show that this factor can be found mm-tree-connected, when GG is a (2m+ϵ)(2m+\epsilon)-tough graph with order and isolated toughness at least r+1r+1, where r(2m1)(2m/ϵ+1)r\ge (2m-1)(2m/\epsilon+1) and ϵ>0\epsilon > 0. Next, we prove that every (m+ϵ)(m+\epsilon)-tough graph of order at least 2m2m with high enough isolated toughness admits an mm-tree-connected factor with maximum degree at most 2m+12m+1. From this result, we derive that every (2+ϵ)(2+\epsilon)-tough graph of order at least three with high enough isolated toughness has a spanning Eulerian subgraph whose degrees lie in the set {2,4}\{2,4\}. In addition, we provide a family of 5/35/3-tough graphs with high enough isolated toughness having no connected even factors with bounded maximum degree

    Rock-concrete interfacial crack propagation under mixed mode I-II fracture

    Get PDF

    A Survey of Best Monotone Degree Conditions for Graph Properties

    Full text link
    We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvatal's well-known degree condition for hamiltonicity is best possible.Comment: 25 page

    Debonding along the fixed anchor length of a ground anchorage

    Get PDF
    Peer reviewedPostprin

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Spanning Trees and Spanning Eulerian Subgraphs with Small Degrees. II

    Full text link
    Let GG be a connected graph with XV(G)X\subseteq V(G) and with the spanning forest FF. Let λ[0,1]\lambda\in [0,1] be a real number and let η:X(λ,)\eta:X\rightarrow (\lambda,\infty) be a real function. In this paper, we show that if for all SXS\subseteq X, ω(GS)vS(η(v)2)+2λ(eG(S)+1)\omega(G\setminus S)\le\sum_{v\in S}\big(\eta(v)-2\big)+2-\lambda(e_G(S)+1), then GG has a spanning tree TT containing FF such that for each vertex vXv\in X, dT(v)η(v)λ+max{0,dF(v)1}d_T(v)\le \lceil\eta(v)-\lambda\rceil+\max\{0,d_F(v)-1\}, where ω(GS)\omega(G\setminus S) denotes the number of components of GSG\setminus S and eG(S)e_G(S) denotes the number of edges of GG with both ends in SS. This is an improvement of several results and the condition is best possible. Next, we also investigate an extension for this result and deduce that every kk-edge-connected graph GG has a spanning subgraph HH containing mm edge-disjoint spanning trees such that for each vertex vv, dH(v)mk(dG(v)2m)+2md_H(v)\le \big\lceil \frac{m}{k}(d_G(v)-2m)\big\rceil+2m, where k2mk\ge 2m; also if GG contains kk edge-disjoint spanning trees, then HH can be found such that for each vertex vv, dH(v)mk(dG(v)m)+md_H(v)\le \big\lceil \frac{m}{k}(d_G(v)-m)\big\rceil+m, where kmk\ge m. Finally, we show that strongly 22-tough graphs, including (3+1/2)(3+1/2)-tough graphs of order at least three, have spanning Eulerian subgraphs whose degrees lie in the set {2,4}\{2,4\}. In addition, we show that every 11-tough graph has spanning closed walk meeting each vertex at most 22 times and prove a long-standing conjecture due to Jackson and Wormald (1990).Comment: 46 pages, Keywords: Spanning tree; spanning Eulerian; spanning closed walk; connected factor; toughness; total exces

    Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    Get PDF
    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts
    corecore