93,406 research outputs found

    Assessing the effectiveness of direct gesture interaction for a safety critical maritime application

    Get PDF
    Multi-touch interaction, in particular multi-touch gesture interaction, is widely believed to give a more natural interaction style. We investigated the utility of multi-touch interaction in the safety critical domain of maritime dynamic positioning (DP) vessels. We conducted initial paper prototyping with domain experts to gain an insight into natural gestures; we then conducted observational studies aboard a DP vessel during operational duties and two rounds of formal evaluation of prototypes - the second on a motion platform ship simulator. Despite following a careful user-centred design process, the final results show that traditional touch-screen button and menu interaction was quicker and less erroneous than gestures. Furthermore, the moving environment accentuated this difference and we observed initial use problems and handedness asymmetries on some multi-touch gestures. On the positive side, our results showed that users were able to suspend gestural interaction more naturally, thus improving situational awareness

    Assessing the effectiveness of multi-touch interfaces for DP operation

    Get PDF
    Navigating a vessel using dynamic positioning (DP) systems close to offshore installations is a challenge. The operator's only possibility of manipulating the system is through its interface, which can be categorized as the physical appearance of the equipment and the visualization of the system. Are there possibilities of interaction between the operator and the system that can reduce strain and cognitive load during DP operations? Can parts of the system (e.g. displays) be physically brought closer to the user to enhance the feeling of control when operating the system? Can these changes make DP operations more efficient and safe? These questions inspired this research project, which investigates the use of multi-touch and hand gestures known from consumer products to directly manipulate the visualization of a vessel in the 3D scene of a DP system. Usability methodologies and evaluation techniques that are widely used in consumer market research were used to investigate how these interaction techniques, which are new to the maritime domain, could make interaction with the DP system more efficient and transparent both during standard and safety-critical operations. After investigating which gestures felt natural to use by running user tests with a paper prototype, the gestures were implemented into a Rolls-Royce DP system and tested in a static environment. The results showed that the test participants performed significantly faster using direct gesture manipulation compared to using traditional button/menu interaction. To support the results from these tests, further tests were carried out. The purpose is to investigate how gestures are performed in a moving environment, using a motion platform to simulate rough sea conditions. The key results and lessons learned from a collection of four user experiments, together with a discussion of the choice of evaluation techniques will be discussed in this paper

    Rethinking 'multi-user': an in-the-wild study of how groups approach a walk-up-and-use tabletop interface

    Get PDF
    Multi-touch tabletops have been much heralded as an innovative technology that can facilitate new ways of group working. However, there is little evidence of these materialising outside of research lab settings. We present the findings of a 5-week in-the-wild study examining how a shared planning application – designed to run on a walk-up- and-use tabletop – was used when placed in a tourist information centre. We describe how groups approached, congregated and interacted with it and the social interactions that took place – noting how they were quite different from research findings describing the ways groups work around a tabletop in lab settings. We discuss the implications of such situated group work for designing collaborative tabletop applications for use in public settings

    RealTimeChess: Lessons from a Participatory Design Process for a Collaborative Multi-Touch, Multi-User Game

    Get PDF
    We report on a long-term participatory design process during which we designed and improved RealTimeChess, a collaborative but competitive game that is played using touch input by multiple people on a tabletop display. During the design process we integrated concurrent input from all players and pace control, allowing us to steer the interaction along a continuum between high-paced simultaneous and low-paced turn-based gameplay. In addition, we integrated tutorials for teaching interaction techniques, mechanisms to control territoriality, remote interaction, and alert feedback. Integrating these mechanism during the participatory design process allowed us to examine their effects in detail, revealing for instance effects of the competitive setting on the perception of awareness as well as territoriality. More generally, the resulting application provided us with a testbed to study interaction on shared tabletop surfaces and yielded insights important for other time-critical or attention-demanding applications.

    Factors influencing visual attention switch in multi-display user interfaces: a survey

    Get PDF
    Multi-display User Interfaces (MDUIs) enable people to take advantage of the different characteristics of different display categories. For example, combining mobile and large displays within the same system enables users to interact with user interface elements locally while simultaneously having a large display space to show data. Although there is a large potential gain in performance and comfort, there is at least one main drawback that can override the benefits of MDUIs: the visual and physical separation between displays requires that users perform visual attention switches between displays. In this paper, we present a survey and analysis of existing data and classifications to identify factors that can affect visual attention switch in MDUIs. Our analysis and taxonomy bring attention to the often ignored implications of visual attention switch and collect existing evidence to facilitate research and implementation of effective MDUIs.Postprin
    corecore