3,790 research outputs found

    Some Fubini theorems on product sigma-algebras for non-additive measures

    Get PDF
    We give some Fubini's theorems (interversion of the order of integration and product capacities) in the framework of the Choquet integral for product sigma-algebras. Following Ghirardato this is performed by considering slice-comonotonic functions. Our results can be easily interpreted for belief functions, in the Dempster and Shafer setting.Choquet integral, product capacity.

    A Philosophical Foundation of Non-Additive Measure and Probability

    Get PDF
    In this paper, non-additivity of a set function is interpreted as a method to express relations between sets which are not modeled in a set theoretic way. Drawing upon a concept called "quasi-analysis” of the philosopher Rudolf Carnap, we introduce a transform for sets, functions, and set functions to formalize this idea. Any image-set under this transform can be interpreted as a class of (quasi-)components or (quasi-)properties representing the original set. We show that non-additive set functions can be represented as signed σ-additive measures defined on sets of quasi-components. We then use this interpretation to justify the use of non-additive set functions in various applications like for instance multi criteria decision making and cooperative game theory. Additionally, we show exemplarily by means of independence, conditioning, and products how concepts from classical measure and probability theory can be transfered to the non-additive theory via the transfor

    Disagreement percolation for the hard-sphere model

    Full text link
    Disagreement percolation connects a Gibbs lattice gas and i.i.d. site percolation on the same lattice such that non-percolation implies uniqueness of the Gibbs measure. This work generalises disagreement percolation to the hard-sphere model and the Boolean model. Non-percolation of the Boolean model implies the uniqueness of the Gibbs measure and exponential decay of pair correlations and finite volume errors. Hence, lower bounds on the critical intensity for percolation of the Boolean model imply lower bounds on the critical activity for a (potential) phase transition. These lower bounds improve upon known bounds obtained by cluster expansion techniques. The proof uses a novel dependent thinning from a Poisson point process to the hard-sphere model, with the thinning probability related to a derivative of the free energy

    Laminations and groups of homeomorphisms of the circle

    Full text link
    If M is an atoroidal 3-manifold with a taut foliation, Thurston showed that pi_1(M) acts on a circle. Here, we show that some other classes of essential laminations also give rise to actions on circles. In particular, we show this for tight essential laminations with solid torus guts. We also show that pseudo-Anosov flows induce actions on circles. In all cases, these actions can be made into faithful ones, so pi_1(M) is isomorphic to a subgroup of Homeo(S^1). In addition, we show that the fundamental group of the Weeks manifold has no faithful action on S^1. As a corollary, the Weeks manifold does not admit a tight essential lamination, a pseudo-Anosov flow, or a taut foliation. Finally, we give a proof of Thurston's universal circle theorem for taut foliations based on a new, purely topological, proof of the Leaf Pocket Theorem.Comment: 50 pages, 12 figures. Ver 2: minor improvement

    Finite volume schemes for diffusion equations: introduction to and review of modern methods

    Full text link
    We present Finite Volume methods for diffusion equations on generic meshes, that received important coverage in the last decade or so. After introducing the main ideas and construction principles of the methods, we review some literature results, focusing on two important properties of schemes (discrete versions of well-known properties of the continuous equation): coercivity and minimum-maximum principles. Coercivity ensures the stability of the method as well as its convergence under assumptions compatible with real-world applications, whereas minimum-maximum principles are crucial in case of strong anisotropy to obtain physically meaningful approximate solutions

    Topological Entropy and Algebraic Entropy for group endomorphisms

    Full text link
    The notion of entropy appears in many fields and this paper is a survey about entropies in several branches of Mathematics. We are mainly concerned with the topological and the algebraic entropy in the context of continuous endomorphisms of locally compact groups, paying special attention to the case of compact and discrete groups respectively. The basic properties of these entropies, as well as many examples, are recalled. Also new entropy functions are proposed, as well as generalizations of several known definitions and results. Furthermore we give some connections with other topics in Mathematics as Mahler measure and Lehmer Problem from Number Theory, and the growth rate of groups and Milnor Problem from Geometric Group Theory. Most of the results are covered by complete proofs or references to appropriate sources
    corecore