6,631 research outputs found

    Absence of phase coexistence in disordered exclusion processes with bypassing

    Full text link
    Adding quenched disorder to the one-dimensional asymmetric exclusion process is known to always induce phase separation. To test the robustness of this result, we introduce two modifications of the process that allow particles to bypass defect sites. In the first case, particles are allowed to jump l sites ahead with the probability p_l ~ l^-(1+sigma), where sigma>1. By using Monte Carlo simulations and the mean-field approach, we show that phase coexistence may be absent up to enormously large system sizes, e.g. lnL~50, but is present in the thermodynamic limit, as in the short-range case. In the second case, we consider the exclusion process on a quadratic lattice with symmetric and totally asymmetric hopping perpendicular to and along the direction of driving, respectively. We show that in an anisotropic limit of this model a regime may be found where phase coexistence is absent.Comment: 18 pages, 10 figures, to appear in JSTA

    Generic principles of active transport

    Full text link
    Nonequilibrium collective motion is ubiquitous in nature and often results in a rich collection of intringuing phenomena, such as the formation of shocks or patterns, subdiffusive kinetics, traffic jams, and nonequilibrium phase transitions. These stochastic many-body features characterize transport processes in biology, soft condensed matter and, possibly, also in nanoscience. Inspired by these applications, a wide class of lattice-gas models has recently been considered. Building on the celebrated {\it totally asymmetric simple exclusion process} (TASEP) and a generalization accounting for the exchanges with a reservoir, we discuss the qualitative and quantitative nonequilibrium properties of these model systems. We specifically analyze the case of a dimeric lattice gas, the transport in the presence of pointwise disorder and along coupled tracks.Comment: 21 pages, 10 figures. Pedagogical paper based on a lecture delivered at the conference on "Stochastic models in biological sciences" (May 29 - June 2, 2006 in Warsaw). For the Banach Center Publication

    Phase Transitions in one-dimensional nonequilibrium systems

    Full text link
    The phenomenon of phase transitions in one-dimensional systems is discussed. Equilibrium systems are reviewed and some properties of an energy function which may allow phase transitions and phase ordering in one dimension are identified. We then give an overview of the one-dimensional phase transitions which we have been studied in nonequilibrium systems. A particularly simple model, the zero-range process, for which the steady state is know exactly as a product measure, is discussed in some detail. Generalisations of the model, for which a product measure still holds, are also discussed. We analyse in detail a condensation phase transition in the model and show how conditions under which it may occur may be related to the existence of an effective long-range energy function. Although the zero-range process is not well known within the physics community, several nonequilibrium models have been proposed that are examples of a zero-range process, or closely related to it, and we review these applications here.Comment: latex, 28 pages, review article; references update

    The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics

    Full text link
    The asymmetric simple exclusion process (ASEP) plays the role of a paradigm in non-equilibrium statistical mechanics. We review exact results for the ASEP obtained by Bethe ansatz and put emphasis on the algebraic properties of this model. The Bethe equations for the eigenvalues of the Markov matrix of the ASEP are derived from the algebraic Bethe ansatz. Using these equations we explain how to calculate the spectral gap of the model and how global spectral properties such as the existence of multiplets can be predicted. An extension of the Bethe ansatz leads to an analytic expression for the large deviation function of the current in the ASEP that satisfies the Gallavotti-Cohen relation. Finally, we describe some variants of the ASEP that are also solvable by Bethe ansatz. Keywords: ASEP, integrable models, Bethe ansatz, large deviations.Comment: 24 pages, 5 figures, published in the "special issue on recent advances in low-dimensional quantum field theories", P. Dorey, G. Dunne and J. Feinberg editor

    Parallel Coupling of Symmetric and Asymmetric Exclusion Processes

    Full text link
    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions.Comment: 16 page

    Frozen shuffle update for an asymmetric exclusion process on a ring

    Full text link
    We introduce a new rule of motion for a totally asymmetric exclusion process (TASEP) representing pedestrian traffic on a lattice. Its characteristic feature is that the positions of the pedestrians, modeled as hard-core particles, are updated in a fixed predefined order, determined by a phase attached to each of them. We investigate this model analytically and by Monte Carlo simulation on a one-dimensional lattice with periodic boundary conditions. At a critical value of the particle density a transition occurs from a phase with `free flow' to one with `jammed flow'. We are able to analytically predict the current-density diagram for the infinite system and to find the scaling function that describes the finite size rounding at the transition point.Comment: 16 page

    Open two-species exclusion processes with integrable boundaries

    Full text link
    We give a complete classification of integrable Markovian boundary conditions for the asymmetric simple exclusion process with two species (or classes) of particles. Some of these boundary conditions lead to non-vanishing particle currents for each species. We explain how the stationary state of all these models can be expressed in a matrix product form, starting from two key components, the Zamolodchikov-Faddeev and Ghoshal-Zamolodchikov relations. This statement is illustrated by studying in detail a specific example, for which the matrix Ansatz (involving 9 generators) is explicitly constructed and physical observables (such as currents, densities) calculated.Comment: 19 pages; typos corrected, more details on the Matrix Ansatz algebr

    Zero-range process with open boundaries

    Full text link
    We calculate the exact stationary distribution of the one-dimensional zero-range process with open boundaries for arbitrary bulk and boundary hopping rates. When such a distribution exists, the steady state has no correlations between sites and is uniquely characterized by a space-dependent fugacity which is a function of the boundary rates and the hopping asymmetry. For strong boundary drive the system has no stationary distribution. In systems which on a ring geometry allow for a condensation transition, a condensate develops at one or both boundary sites. On all other sites the particle distribution approaches a product measure with the finite critical density \rho_c. In systems which do not support condensation on a ring, strong boundary drive leads to a condensate at the boundary. However, in this case the local particle density in the interior exhibits a complex algebraic growth in time. We calculate the bulk and boundary growth exponents as a function of the system parameters
    corecore