2,041 research outputs found

    Totally Distributed Energy-Efficient Transmission in MIMO Interference Channels

    Get PDF
    In this paper, we consider the problem of maximizing the energy efficiency (EE) for multi-input multi-output (MIMO) interference channels, subject to the per-link power constraint. To avoid extensive information exchange among all links, the optimization problem is formulated as a noncooperative game, where each link maximizes its own EE. We show that this game always admits a Nash equilibrium (NE) and the sufficient condition for the uniqueness of the NE is derived for the case of arbitrary channel matrices, which can be checked in practice. To reach the NE of this game, we develop a totally distributed EE algorithm, in which each link updates its own transmit covariance matrix in a completely distributed and asynchronous way: Some players may update their solutions more frequently than others or even use the outdated interference information. The sufficient conditions that guarantee the global convergence of the proposed algorithm to the NE of the game have been given as well. We also study the impact of the circuit power consumption on the sum-EE performance of the proposed algorithm in the case when the links are separated sufficiently far away. Moreover, the tradeoff between the sum-EE and the sum-spectral efficiency (SE) is investigated with the proposed algorithm under two special cases: 1) low transmit power constraint regime; 2) high transmit power constraint regime. Finally, extensive simulations are conducted to evaluate the impact of various system parameters on the system performance.Comment: 42 pages, 8 figures, accepted in TW

    Wireless Cellular Networks

    No full text
    When aiming for achieving high spectral efficiency in wireless cellular networks, cochannel interference (CCI) becomes the dominant performancelimiting factor. This article provides a survey of CCI mitigation techniques, where both active and passive approaches are discussed in the context of both open- and closed-loop designs.More explicitly, we considered both the family of flexible frequency-reuse (FFR)-aided and dynamic channel allocation (DCA)-aided interference avoidance techniques as well as smart antenna-aided interference mitigation techniques, which may be classified as active approach

    Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage

    Full text link
    With the rapid growth of demand for ever-increasing data rate, spectrum resources have become more and more scarce. As a promising technique to increase the efficiency of the spectrum utilization, cognitive radio (CR) technique has the great potential to meet such a requirement by allowing un-licensed users to coexist in licensed bands. In conventional CR systems, the spectrum sensing is performed at the beginning of each time slot before the data transmission. This unfortunately results in two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. To tackle these problems, in this paper we present a new design paradigm for future CR by exploring the full-duplex (FD) techniques to achieve the simultaneous spectrum sensing and data transmission. With FD radios equipped at the secondary users (SUs), SUs can simultaneously sense and access the vacant spectrum, and thus, significantly improve sensing performances and meanwhile increase data transmission efficiency. The aim of this article is to transform the promising conceptual framework into the practical wireless network design by addressing a diverse set of challenges such as protocol design and theoretical analysis. Several application scenarios with FD enabled CR are elaborated, and key open research directions and novel algorithms in these systems are discussed

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201
    • …
    corecore