68 research outputs found

    Energy-Aware Scheduling for Streaming Applications

    Get PDF
    Streaming applications have become increasingly important and widespread,with application domains ranging from embedded devices to server systems.Traditionally, researchers have been focusing on improving the performanceof streaming applications to achieve high throughput and low response time.However, increasingly more attention is being shifted topower/performance trade-offbecause power consumption has become a limiting factor on system designas integrated circuits enter the realm of nanometer technology.This work addresses the problem of scheduling a streaming application(represented by a task graph)with the goal of minimizing its energy consumptionwhile satisfying its two quality of service (QoS) requirements,namely, throughput and response time.The available power management mechanisms are dynamic voltage scaling (DVS),which has been shown to be effective in reducing dynamic power consumption, andvary-on/vary-off, which turns processors on and off to save static power consumption.Scheduling algorithms are proposed for different computing platforms (uniprocessor and multiprocessor systems),different characteristics of workload (deterministic and stochastic workload),and different types of task graphs (singleton and general task graphs).Both continuous and discrete processor power models are considered.The highlights are a unified approach for obtaining optimal (or provably close to optimal)uniprocessor DVS schemes for various DVS strategies anda novel multiprocessor scheduling algorithm that exploits the differencebetween the two QoS requirements to perform processor allocation,task mapping, and task speedscheduling simultaneously

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues
    corecore