678 research outputs found

    Duality between Spin networks and the 2D Ising model

    Full text link
    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories which couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.Comment: 35 page

    Graph labeling games

    Get PDF
    We propose the study of many new variants of two-person graph labeling games. Hardly anything has been done in this wide open field so far. © 2017 Elsevier B.V

    Graph labeling games

    Full text link

    Further Evidence Towards the Multiplicative 1-2-3 Conjecture

    Get PDF
    The product version of the 1-2-3 Conjecture, introduced by Skowronek-Kazi{\'o}w in 2012, states that, a few obvious exceptions apart, all graphs can be 3-edge-labelled so that no two adjacent vertices get incident to the same product of labels. To date, this conjecture was mainly verified for complete graphs and 3-colourable graphs. As a strong support to the conjecture, it was also proved that all graphs admit such 4-labellings. In this work, we investigate how a recent proof of the multiset version of the 1-2-3 Conjecture by Vu{\v c}kovi{\'c} can be adapted to prove results on the product version. We prove that 4-chromatic graphs verify the product version of the 1-2-3 Conjecture. We also prove that for all graphs we can design 3-labellings that almost have the desired property. This leads to a new problem, that we solve for some graph classes

    Graph Sample and Hold: A Framework for Big-Graph Analytics

    Full text link
    Sampling is a standard approach in big-graph analytics; the goal is to efficiently estimate the graph properties by consulting a sample of the whole population. A perfect sample is assumed to mirror every property of the whole population. Unfortunately, such a perfect sample is hard to collect in complex populations such as graphs (e.g. web graphs, social networks etc), where an underlying network connects the units of the population. Therefore, a good sample will be representative in the sense that graph properties of interest can be estimated with a known degree of accuracy. While previous work focused particularly on sampling schemes used to estimate certain graph properties (e.g. triangle count), much less is known for the case when we need to estimate various graph properties with the same sampling scheme. In this paper, we propose a generic stream sampling framework for big-graph analytics, called Graph Sample and Hold (gSH). To begin, the proposed framework samples from massive graphs sequentially in a single pass, one edge at a time, while maintaining a small state. We then show how to produce unbiased estimators for various graph properties from the sample. Given that the graph analysis algorithms will run on a sample instead of the whole population, the runtime complexity of these algorithm is kept under control. Moreover, given that the estimators of graph properties are unbiased, the approximation error is kept under control. Finally, we show the performance of the proposed framework (gSH) on various types of graphs, such as social graphs, among others

    Cluster varieties from Legendrian knots

    Full text link
    Many interesting spaces --- including all positroid strata and wild character varieties --- are moduli of constructible sheaves on a surface with microsupport in a Legendrian link. We show that the existence of cluster structures on these spaces may be deduced in a uniform, systematic fashion by constructing and taking the sheaf quantizations of a set of exact Lagrangian fillings in correspondence with isotopy representatives whose front projections have crossings with alternating orientations. It follows in turn that results in cluster algebra may be used to construct and distinguish exact Lagrangian fillings of Legendrian links in the standard contact three space.Comment: 47 page

    Algorithmic and enumerative aspects of the Moser-Tardos distribution

    Full text link
    Moser & Tardos have developed a powerful algorithmic approach (henceforth "MT") to the Lovasz Local Lemma (LLL); the basic operation done in MT and its variants is a search for "bad" events in a current configuration. In the initial stage of MT, the variables are set independently. We examine the distributions on these variables which arise during intermediate stages of MT. We show that these configurations have a more or less "random" form, building further on the "MT-distribution" concept of Haeupler et al. in understanding the (intermediate and) output distribution of MT. This has a variety of algorithmic applications; the most important is that bad events can be found relatively quickly, improving upon MT across the complexity spectrum: it makes some polynomial-time algorithms sub-linear (e.g., for Latin transversals, which are of basic combinatorial interest), gives lower-degree polynomial run-times in some settings, transforms certain super-polynomial-time algorithms into polynomial-time ones, and leads to Las Vegas algorithms for some coloring problems for which only Monte Carlo algorithms were known. We show that in certain conditions when the LLL condition is violated, a variant of the MT algorithm can still produce a distribution which avoids most of the bad events. We show in some cases this MT variant can run faster than the original MT algorithm itself, and develop the first-known criterion for the case of the asymmetric LLL. This can be used to find partial Latin transversals -- improving upon earlier bounds of Stein (1975) -- among other applications. We furthermore give applications in enumeration, showing that most applications (where we aim for all or most of the bad events to be avoided) have many more solutions than known before by proving that the MT-distribution has "large" min-entropy and hence that its support-size is large

    Coloring and covering problems on graphs

    Get PDF
    The \emph{separation dimension} of a graph GG, written π(G)\pi(G), is the minimum number of linear orderings of V(G)V(G) such that every two nonincident edges are ``separated'' in some ordering, meaning that both endpoints of one edge appear before both endpoints of the other. We introduce the \emph{fractional separation dimension} πf(G)\pi_f(G), which is the minimum of a/ba/b such that some aa linear orderings (repetition allowed) separate every two nonincident edges at least bb times. In contrast to separation dimension, we show fractional separation dimension is bounded: always πf(G)3\pi_f(G)\le 3, with equality if and only if GG contains K4K_4. There is no stronger bound even for bipartite graphs, since πf(Km,m)=πf(Km+1,m)=3mm+1\pi_f(K_{m,m})=\pi_f(K_{m+1,m})=\frac{3m}{m+1}. We also compute πf(G)\pi_f(G) for cycles and some complete tripartite graphs. We show that πf(G)<2\pi_f(G)<\sqrt{2} when GG is a tree and present a sequence of trees on which the value tends to 4/34/3. We conjecture that when n=3mn=3m the K4K_4-free nn-vertex graph maximizing πf(G)\pi_f(G) is Km,m,mK_{m,m,m}. We also consider analogous problems for circular orderings, where pairs of nonincident edges are separated unless their endpoints alternate. Let π(G)\pi^\circ(G) be the number of circular orderings needed to separate all pairs, and let πf(G)\pi_f^\circ(G) be the fractional version. Among our results: (1) π(G)=1\pi^\circ(G)=1 if and only GG is outerplanar. (2) π(G)2\pi^\circ(G)\le2 when GG is bipartite. (3) π(Kn)log2log3(n1)\pi^\circ(K_n)\ge\log_2\log_3(n-1). (4) πf(G)32\pi_f^\circ(G)\le\frac{3}{2}, with equality if and only if K4GK_4\subseteq G. (5) πf(Km,m)=3m32m1\pi_f^\circ(K_{m,m})=\frac{3m-3}{2m-1}. A \emph{star kk-coloring} is a proper kk-coloring where the union of any two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an \emph{\Ifp}. We use discharging to prove that every graph with maximum average degree less than 52\frac{5}{2} has an \Ifp, which is sharp and improves the result of Bu, Cranston, Montassier, Raspaud, and Wang (2009). As a corollary, we gain that every planar graph with girth at least 10 has a star 4-coloring. A proper vertex coloring of a graph GG is \emph{rr-dynamic} if for each vV(G)v\in V(G), at least min{r,d(v)}\min\{r,d(v)\} colors appear in NG(v)N_G(v). We investigate 33-dynamic versions of coloring and list coloring. We prove that planar and toroidal graphs are 3-dynamically 10-choosable, and this bound is sharp for toroidal graphs. Given a proper total kk-coloring cc of a graph GG, we define the \emph{sum value} of a vertex vv to be c(v)+uvE(G)c(uv)c(v) + \sum_{uv \in E(G)} c(uv). The smallest integer kk such that GG has a proper total kk-coloring whose sum values form a proper coloring is the \emph{neighbor sum distinguishing total chromatic number} χΣ(G)\chi''_{\Sigma}(G). Pil{\'s}niak and Wo{\'z}niak~(2013) conjectured that χΣ(G)Δ(G)+3\chi''_{\Sigma}(G)\leq \Delta(G)+3 for any simple graph with maximum degree Δ(G)\Delta(G). We prove this bound to be asymptotically correct by showing that χΣ(G)Δ(G)(1+o(1))\chi''_{\Sigma}(G)\leq \Delta(G)(1+o(1)). The main idea of our argument relies on Przyby{\l}o's proof (2014) for neighbor sum distinguishing edge-coloring
    corecore