5,527 research outputs found

    Edge-vertex domination and total edge domination in trees

    Get PDF
    An edge e is an element of E(G) dominates a vertex v is an element of V (G) if e is incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is edge-vertex dominated by an edge of D. The edge-vertex domination number of a graph G is the minimum cardinality of an edge-vertex dominating set of G. A subset D subset of E(G) is a total edge dominating set of G if every edge of G has a neighbor in D. The total edge domination number of G is the minimum cardinality of a total edge dominating set of G. We characterize all trees with total edge domination number equal to edge-vertex domination number.The second author is supported by DST-SERB (MATRICS), India -grant MTR/2018/000234.Publisher's Versio

    Total domination stable graphs upon edge addition

    Get PDF
    AbstractA set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge addition stable if the addition of an arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge addition stable graphs. We determine a sharp upper bound on the total domination number of total domination edge addition stable graphs, and we determine which combinations of order and total domination number are attainable. We finish this work with an investigation of claw-free total domination edge addition stable graphs

    Edge Dominating Sets and Vertex Covers

    Get PDF
    Bipartite graphs with equal edge domination number and maximum matching cardinality are characterized. These two parameters are used to develop bounds on the vertex cover and total vertex cover numbers of graphs and a resulting chain of vertex covering, edge domination, and matching parameters is explored. In addition, the total vertex cover number is compared to the total domination number of trees and grid graphs

    k-Tuple_Total_Domination_in_Inflated_Graphs

    Full text link
    The inflated graph GIG_{I} of a graph GG with n(G)n(G) vertices is obtained from GG by replacing every vertex of degree dd of GG by a clique, which is isomorph to the complete graph KdK_{d}, and each edge (xi,xj)(x_{i},x_{j}) of GG is replaced by an edge (u,v)(u,v) in such a way that u∈Xiu\in X_{i}, v∈Xjv\in X_{j}, and two different edges of GG are replaced by non-adjacent edges of GIG_{I}. For integer k≥1k\geq 1, the kk-tuple total domination number γ×k,t(G)\gamma_{\times k,t}(G) of GG is the minimum cardinality of a kk-tuple total dominating set of GG, which is a set of vertices in GG such that every vertex of GG is adjacent to at least kk vertices in it. For existing this number, must the minimum degree of GG is at least kk. Here, we study the kk-tuple total domination number in inflated graphs when k≥2k\geq 2. First we prove that n(G)k≤γ×k,t(GI)≤n(G)(k+1)−1n(G)k\leq \gamma_{\times k,t}(G_{I})\leq n(G)(k+1)-1, and then we characterize graphs GG that the kk-tuple total domination number number of GIG_I is n(G)kn(G)k or n(G)k+1n(G)k+1. Then we find bounds for this number in the inflated graph GIG_I, when GG has a cut-edge ee or cut-vertex vv, in terms on the kk-tuple total domination number of the inflated graphs of the components of G−eG-e or vv-components of G−vG-v, respectively. Finally, we calculate this number in the inflated graphs that have obtained by some of the known graphs
    • …
    corecore