483 research outputs found

    Compressive Source Separation: Theory and Methods for Hyperspectral Imaging

    Get PDF
    With the development of numbers of high resolution data acquisition systems and the global requirement to lower the energy consumption, the development of efficient sensing techniques becomes critical. Recently, Compressed Sampling (CS) techniques, which exploit the sparsity of signals, have allowed to reconstruct signal and images with less measurements than the traditional Nyquist sensing approach. However, multichannel signals like Hyperspectral images (HSI) have additional structures, like inter-channel correlations, that are not taken into account in the classical CS scheme. In this paper we exploit the linear mixture of sources model, that is the assumption that the multichannel signal is composed of a linear combination of sources, each of them having its own spectral signature, and propose new sampling schemes exploiting this model to considerably decrease the number of measurements needed for the acquisition and source separation. Moreover, we give theoretical lower bounds on the number of measurements required to perform reconstruction of both the multichannel signal and its sources. We also proposed optimization algorithms and extensive experimentation on our target application which is HSI, and show that our approach recovers HSI with far less measurements and computational effort than traditional CS approaches.Comment: 32 page

    Approximate Message Passing in Coded Aperture Snapshot Spectral Imaging

    Full text link
    We consider a compressive hyperspectral imaging reconstruction problem, where three-dimensional spatio-spectral information about a scene is sensed by a coded aperture snapshot spectral imager (CASSI). The approximate message passing (AMP) framework is utilized to reconstruct hyperspectral images from CASSI measurements, and an adaptive Wiener filter is employed as a three-dimensional image denoiser within AMP. We call our algorithm "AMP-3D-Wiener." The simulation results show that AMP-3D-Wiener outperforms existing widely-used algorithms such as gradient projection for sparse reconstruction (GPSR) and two-step iterative shrinkage/thresholding (TwIST) given the same amount of runtime. Moreover, in contrast to GPSR and TwIST, AMP-3D-Wiener need not tune any parameters, which simplifies the reconstruction process.Comment: to appear in Globalsip 201

    Efficient high-dimensional entanglement imaging with a compressive sensing, double-pixel camera

    Get PDF
    We implement a double-pixel, compressive sensing camera to efficiently characterize, at high resolution, the spatially entangled fields produced by spontaneous parametric downconversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster-scanning by a scaling factor up to n^2/log(n) for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates compressive sensing can be especially effective for higher-order measurements on correlated systems.Comment: 10 pages, 7 figure
    • …
    corecore