2,991 research outputs found

    Using Physical Compilation to Implement a System on Chip Platform

    Get PDF
    The goal of this thesis was to setup a complete design flow involving physical synthesis. The design chosen for this purpose was a system-on-chip (SoC) platform developed at the University of Tennessee. It involves a Leon Processor with a minimal cache configuration, an AMBA on-chip bus and an Advanced Encryption Standard module which performs decryption. As transistor size has entered the deep submicron level, iterations involved in the design cycle have increased due to the domination of interconnect delays over cell delays. Traditionally, interconnect delay has been estimated through the use of wire-load models. However, since there is no physical placement information, the delay estimation may be ineffective and result in increased iterations. Hence, placement-based synthesis has recently been introduced to provide better interconnect delay estimation. The tool used in this thesis to implement the system-on-chip design using physical synthesis is Synopsys Physical Compiler. The flow has been setup through the use of the Galaxy Reference Flow scripts obtained from Synopsys. As part of the thesis, an analysis of the differences between a physically synthesized design and a logically synthesized one in terms of area and delay is presented

    The predictor-adaptor paradigm : automation of custom layout by flexible design

    Get PDF

    Policy issues in interconnecting networks

    Get PDF
    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented

    The Level-0 Muon Trigger for the LHCb Experiment

    Get PDF
    A very compact architecture has been developed for the first level Muon Trigger of the LHCb experiment that processes 40 millions of proton-proton collisions per second. For each collision, it receives 3.2 kBytes of data and it finds straight tracks within a 1.2 microseconds latency. The trigger implementation is massively parallel, pipelined and fully synchronous with the LHC clock. It relies on 248 high density Field Programable Gate arrays and on the massive use of multigigabit serial link transceivers embedded inside FPGAs.Comment: 33 pages, 16 figures, submitted to NIM

    Developments and experimental evaluation of partitioning algorithms for adaptive computing systems

    Get PDF
    Multi-FPGA systems offer the potential to deliver higher performance solutions than traditional computers for some low-level computing tasks. This requires a flexible hardware substrate and an automated mapping system. CHAMPION is an automated mapping system for implementing image processing applications in multi-FPGA systems under development at the University of Tennessee. CHAMPION will map applications in the Khoros Cantata graphical programming environment to hardware. The work described in this dissertation involves the automation of the CHAMPION backend design flow, which includes the partitioning problem, netlist to structural VHDL conversion, synthesis and placement and routing, and host code generation. The primary goal is to investigate the development and evaluation of three different k-way partitioning approaches. In the first and the second approaches, we discuss the development and implementation of two existing algorithms. The first approach is a hierarchical partitioning method based on topological ordering (HP). The second approach is a recursive algorithm based on the Fiduccia and Mattheyses bipartitioning heuristic (RP). We extend these algorithms to handle the multiple constraints imposed by adaptive computing systems. We also introduce a new recursive partitioning method based on topological ordering and levelization (RPL). In addition to handling the partitioning constraints, the new approach efficiently addresses the problem of minimizing the number of FPGAs used and the amount of computation, thereby overcoming some of the weaknesses of the HP and RP algorithms
    corecore