2,748 research outputs found

    Generalized disjunction decomposition for evolvable hardware

    Get PDF
    Evolvable hardware (EHW) refers to self-reconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). One of the main difficulties in using EHW to solve real-world problems is scalability, which limits the size of the circuit that may be evolved. This paper outlines a new type of decomposition strategy for EHW, the “generalized disjunction decomposition” (GDD), which allows the evolution of large circuits. The proposed method has been extensively tested, not only with multipliers and parity bit problems traditionally used in the EHW community, but also with logic circuits taken from the Microelectronics Center of North Carolina (MCNC) benchmark library and randomly generated circuits. In order to achieve statistically relevant results, each analyzed logic circuit has been evolved 100 times, and the average of these results is presented and compared with other EHW techniques. This approach is necessary because of the probabilistic nature of EA; the same logic circuit may not be solved in the same way if tested several times. The proposed method has been examined in an extrinsic EHW system using the(1+lambda)(1 + lambda)evolution strategy. The results obtained demonstrate that GDD significantly improves the evolution of logic circuits in terms of the number of generations, reduces computational time as it is able to reduce the required time for a single iteration of the EA, and enables the evolution of larger circuits never before evolved. In addition to the proposed method, a short overview of EHW systems together with the most recent applications in electrical circuit design is provided

    Generalized disjunction decomposition for the evolution of programmable logic array structures

    Get PDF
    Evolvable hardware refers to a self reconfigurable electronic circuit, where the circuit configuration is under the control of an evolutionary algorithm. Evolvable hardware has shown one of its main deficiencies, when applied to solving real world applications, to be scalability. In the past few years several techniques have been proposed to avoid and/or solve this problem. Generalized disjunction decomposition (GDD) is one of these proposed methods. GDD was successful for the evolution of large combinational logic circuits based on a FPGA structure when used together with bi-directional incremental evolution and with (1+ë) evolution strategy. In this paper a modified generalized disjunction decomposition, together with a recently introduced multi-population genetic algorithm, are implemented and tested for its scalability for solving large combinational logic circuits based on Programmable Logic Array (PLA) structures

    Evolving Combinational Logic Circuits Using a Hybrid Quantum Evolution and Particle Swarm Inspired Algorithm

    Get PDF
    In this paper, an algorithm inspired from quantum evolution and particle swarm to evolve combinational logic circuits is presented. This algorithm uses the framework of the local version of particle swarm optimization with quantum evolutionary algorithms, and integer encoding. A multi-objective fitness function is used to evolve the combinational logic circuits in order obtain feasible circuits with minimal number of gates in the design. A comparative study indicates the superior performance of the hybrid quantum evolution-particle swarm inspired algorithm over the particle swarm and other evolutionary algorithms (such as genetic algorithms) independently

    An FSM Re-Engineering Approach to Sequential Circuit Synthesis by State Splitting

    Get PDF
    We propose Finite State Machine (FSM) re-engineering, a performance enhancement framework for FSM synthesis and optimization. It starts with the traditional FSM synthesis procedure, then proceeds to re-construct a functionally equivalent but topologically different FSM based on the optimization objective, and concludes with another round of FSM synthesis on the re-constructed FSM. This approach explores a larger solution space that consists of a set of FSMs functionally equivalent to the original one, making it possible to obtain better solutions than in the original FSM. Guided by the result from the #2;rst round of synthesis, the solution space exploration process can be rapid and cost-ef#2;cient. We apply this framework to FSM state encoding for power minimization and area minimization. The FSM is #2;rst minimized and encoded using existing state encoding algorithms. Then we develop both a heuristic algorithm and a genetic algorithm to re-construct the FSM. Finally, the FSM is reencoded by the same encoding algorithms. To demonstrate the effectiveness of this framework, we conduct experiments on MCNC91 sequential circuit benchmarks. The circuits are read in and synthesized in SIS environment. After FSM re-engineering are performed, we measure the power, area and delay in the newly synthesized circuits. In the powerdriven synthesis, we observe an average 5.5% of total power reduction with 1.3% area increase and 1.3% delay increase. This results are in general better than other low power state encoding techniques on comparable cases. In the area-driven synthesis, we observe an average 2.7% area reduction, 1.8% delay reduction, and 0.4% power increase. Finally, we use integer linear programming to obtain the optimal low power state encoding for benchmarks of small size. We #2;nd that the optimal solutions in the re- engineered FSMs are 1% to 8% better than the optimal solutions in the original FSMs in terms of power minimization

    Error Mitigation Using Approximate Logic Circuits: A Comparison of Probabilistic and Evolutionary Approaches

    Get PDF
    Technology scaling poses an increasing challenge to the reliability of digital circuits. Hardware redundancy solutions, such as triple modular redundancy (TMR), produce very high area overhead, so partial redundancy is often used to reduce the overheads. Approximate logic circuits provide a general framework for optimized mitigation of errors arising from a broad class of failure mechanisms, including transient, intermittent, and permanent failures. However, generating an optimal redundant logic circuit that is able to mask the faults with the highest probability while minimizing the area overheads is a challenging problem. In this study, we propose and compare two new approaches to generate approximate logic circuits to be used in a TMR schema. The probabilistic approach approximates a circuit in a greedy manner based on a probabilistic estimation of the error. The evolutionary approach can provide radically different solutions that are hard to reach by other methods. By combining these two approaches, the solution space can be explored in depth. Experimental results demonstrate that the evolutionary approach can produce better solutions, but the probabilistic approach is close. On the other hand, these approaches provide much better scalability than other existing partial redundancy techniques.This work was supported by the Ministry of Economy and Competitiveness of Spain under project ESP2015-68245-C4-1-P, and by the Czech science foundation project GA16-17538S and the Ministry of Education, Youth and Sports of the Czech Republic from the National Programme of Sustainability (NPU II); project IT4Innovations excellence in science - LQ1602

    Genetic Algorithms: An Overview with Applications in Evolvable Hardware

    Get PDF

    Automated Exploration of the ASIC Design Space for Minimum Power-Delay-Area Product at the Register Transfer Level

    Get PDF
    Exploring the integrated circuit design space for minimum power-delay-area (PDA) product can be time-consuming and tedious, especially when the target standard-cell library has hundreds of options. In this dissertation, heuristic algorithms that automate this process have been developed, implemented and validated at the reg- ister transfer level. In some cases, the PDA product was 1.9 times better than the initial baseline solution. The parallel search algorithm exhibited 9x speed up when executed on 10 machines simultaneously. These two new methods also characterize the design space for the given RTL code by generating power-delay-area points in addition to the minimum PDA point in case the designer wishes to select a different solution that is a tradeoff among these metrics. As a final step, these two search algorithms are integrated into a fully automated ASIC design flow
    corecore