4,316 research outputs found

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    Modeling and Control of a 7-Level Switched Capacitor Rectifier for Wireless Power Transfer Systems

    Get PDF
    Wireless power continues to increase in popularity for consumer device charging. Rectifier characteristics like efficiency, compactness, impedance tunability, and harmonic content make the multi-level switched capacitor rectifier (MSC) an exceptional candidate for modern WPT systems. The MSC shares the voltage conversion characteristics of a post-rectification buck-boost topology, reduces waveform distortion via its multi-level modulation scheme, demonstrates tank tunability via the phase control inherent to actively switched rectifiers, and accomplishes all this without a bulky filter inductor. In this work, the MSC WPT system operation is explained, and a loss model is constructed. A prototype system is used to validate the models, showing exceptional agreement with the predicted efficiencies. The modeled MSC efficiencies are between 96.1% and 98.0% over the experimental power range up to 20.0 W. Two significant control loops are required for the MSC to be implemented in a real system. First, the output power is regulated using the modulation of the rectifier\u27s input voltage. Second, the switching frequency of the rectifier must exactly match the WPT carrier frequency set by the inverter on the primary side. Here, a small signal discrete time model is used to construct four transfer functions relating to the output voltage. Then, four novel time-to-time transfer functions are built on top of the discrete time model to inform the frequency synchronization feedback loop. Both loops are tested and validated in isolation. Finally, the dual-loop control problem is defined, closed form equations that include loop interactions are derived, and stable wide-range dual-loop operation is demonstrated experimentally

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    An Update on Power Quality

    Get PDF
    Power quality is an important measure of fitness of electricity networks. With increasing renewable energy generations and usage of power electronics converters, it is important to investigate how these developments will have an impact to existing and future electricity networks. This book hence provides readers with an update of power quality issues in all sections of the network, namely, generation, transmission, distribution and end user, and discusses some practical solutions

    Static shunt and series compensations of an SMIB system using flying capacitor multilevel inverter

    Get PDF
    The flying capacitor multilevel inverter (FCMLI) is a multiple voltage level inverter topology intended for high-power and high-voltage operations at low distortion. It uses capacitors, called flying capacitors, to clamp the voltage across the power semiconductor devices. A method for controlling the FCMLI is proposed which ensures that the flying capacitor voltages remain nearly constant using the preferential charging and discharging of these capacitors. A static synchronous compensator (STATCOM) and a static synchronous series compensator (SSSC) based on five-level flying capacitor inverters are proposed. Control schemes for both the FACTS controllers are developed and verified in terms of voltage control, power flow control, and power oscillation damping when installed in a single-machine infinite bus (SMIB) system. Simulation studies are performed using PSCAD/EMTDC to validate the efficacy of the control scheme and the FCMLI-based flexible alternating current transmission system (FACTS) controllers

    A GaN-Based Synchronous Rectifier with Reduced Voltage Distortion for 6.78 MHz Wireless Power Applications

    Get PDF
    The call for a larger degree of engineering innovation grows as wireless power transfer increases in popularity. In this thesis, 6.78 MHz resonant wireless power transfer is explained. Challenges in WPT such as dynamic load variation and electromagnetic interference due to harmonic distortion are discussed, and a literature review is conducted to convey how the current state of the art is addressing these challenges.A GaN-based synchronous rectifier is proposed as a viable solution, and a model of the circuit is constructed. The precisely derived model is compared to a linearized model to illustrate the importance of exactness within the model derivation. The model is then used to quantify the design space of circuit parameters Lr and Cr with regard to harmonic distortion, input phase control, and efficiency. Practical design decisions concerning the 6.78 MHz system are explained. These include gate driver choice and mitigation of PCB parasitics. The model is verified with open loop experimentation using a linear power amplifier, FPGA, electronic load, and two function generators. Current zero-crossing sensing is then introduced in order to achieve self-regulation of both the switching frequency and input phase. The details of the FPGA code and sensing scheme used to obtain this closed loop functionality are described in detail. Finally, conclusions are drawn, and future work is identified

    Applications of Power Electronics:Volume 2

    Get PDF
    • …
    corecore