321 research outputs found

    Mergers and Typical Black Hole Microstates

    Get PDF
    We use mergers of microstates to obtain the first smooth horizonless microstate solutions corresponding to a BPS three-charge black hole with a classically large horizon area. These microstates have very long throats, that become infinite in the classical limit; nevertheless, their curvature is everywhere small. Having a classically-infinite throat makes these microstates very similar to the typical microstates of this black hole. A rough CFT analysis confirms this intuition, and indicates a possible class of dual CFT microstates. We also analyze the properties and the merging of microstates corresponding to zero-entropy BPS black holes and black rings. We find that these solutions have the same size as the horizon size of their classical counterparts, and we examine the changes of internal structure of these microstates during mergers.Comment: 49 pages, 5 figures. v2 references adde

    Genus Distributions of Cubic Outerplanar Graphs

    Full text link

    Random Embeddings of Graphs: The Expected Number of Faces in Most Graphs is Logarithmic

    Full text link
    A random 2-cell embedding of a connected graph GG in some orientable surface is obtained by choosing a random local rotation around each vertex. Under this setup, the number of faces or the genus of the corresponding 2-cell embedding becomes a random variable. Random embeddings of two particular graph classes -- those of a bouquet of nn loops and those of nn parallel edges connecting two vertices -- have been extensively studied and are well-understood. However, little is known about more general graphs despite their important connections with central problems in mainstream mathematics and in theoretical physics (see [Lando & Zvonkin, Springer 2004]). There are also tight connections with problems in computing (random generation, approximation algorithms). The results of this paper, in particular, explain why Monte Carlo methods (see, e.g., [Gross & Tucker, Ann. NY Acad. Sci 1979] and [Gross & Rieper, JGT 1991]) cannot work for approximating the minimum genus of graphs. In his breakthrough work ([Stahl, JCTB 1991] and a series of other papers), Stahl developed the foundation of "random topological graph theory". Most of his results have been unsurpassed until today. In our work, we analyze the expected number of faces of random embeddings (equivalently, the average genus) of a graph GG. It was very recently shown [Campion Loth & Mohar, arXiv 2022] that for any graph GG, the expected number of faces is at most linear. We show that the actual expected number of faces is usually much smaller. In particular, we prove the following results: 1) 12lnn2<E[F(Kn)]3.65lnn\frac{1}{2}\ln n - 2 < \mathbb{E}[F(K_n)] \le 3.65\ln n, for nn sufficiently large. This greatly improves Stahl's n+lnnn+\ln n upper bound for this case. 2) For random models B(n,Δ)B(n,\Delta) containing only graphs, whose maximum degree is at most Δ\Delta, we show that the expected number of faces is Θ(lnn)\Theta(\ln n).Comment: 44 pages, 6 figure

    Renormalization in tensor field theory and the melonic fixed point

    Get PDF
    This thesis focuses on renormalization of tensor field theories. Its first part considers a quartic tensor model with O(N)3O(N)^3 symmetry and long-range propagator. The existence of a non-perturbative fixed point in any dd at large NN is established. We found four lines of fixed points parametrized by the so-called tetrahedral coupling. One of them is infrared attractive, strongly interacting and gives rise to a new kind of CFT, called melonic CFTs which are then studied in more details. We first compute dimensions of bilinears and OPE coefficients at the fixed point which are consistent with a unitary CFT at large NN. We then compute 1/N1/N corrections. At next-to-leading order, the line of fixed points collapses to one fixed point. However, the corrections are complex and unitarity is broken at NLO. Finally, we show that this model respects the FF-theorem. The next part of the thesis investigates sextic tensor field theories in rank 33 and 55. In rank 33, we found two IR stable real fixed points in short range and a line of IR stable real fixed points in long range. Surprisingly, the only fixed point in rank 55 is the Gaussian one. For the rank 33 model, in the short-range case, we still find two IR stable fixed points at NLO. However, in the long-range case, the corrections to the fixed points are non-perturbative and hence unreliable: we found no precursor of the large NN fixed point. The last part of the thesis investigates the class of model exhibiting a melonic large NN limit. We prove that models with tensors in an irreducible representation of O(N)O(N) or Sp(N)Sp(N) in rank 55 indeed admit a large NN limit. This generalization relies on recursive bounds derived from a detailed combinatorial analysis of Feynman graphs involved in the perturbative expansion of our model.Comment: PhD thesis, 277 pages. Based on papers: arXiv:1903.03578, arXiv:1909.07767, arXiv:1912.06641, arXiv:2007.04603, arXiv:2011.11276, arXiv:2104.03665, arXiv:2109.08034, arXiv:2111.1179

    Black Holes as Effective Geometries

    Full text link
    Gravitational entropy arises in string theory via coarse graining over an underlying space of microstates. In this review we would like to address the question of how the classical black hole geometry itself arises as an effective or approximate description of a pure state, in a closed string theory, which semiclassical observers are unable to distinguish from the "naive" geometry. In cases with enough supersymmetry it has been possible to explicitly construct these microstates in spacetime, and understand how coarse-graining of non-singular, horizon-free objects can lead to an effective description as an extremal black hole. We discuss how these results arise for examples in Type II string theory on AdS_5 x S^5 and on AdS_3 x S^3 x T^4 that preserve 16 and 8 supercharges respectively. For such a picture of black holes as effective geometries to extend to cases with finite horizon area the scale of quantum effects in gravity would have to extend well beyond the vicinity of the singularities in the effective theory. By studying examples in M-theory on AdS_3 x S^2 x CY that preserve 4 supersymmetries we show how this can happen.Comment: Review based on lectures of JdB at CERN RTN Winter School and of VB at PIMS Summer School. 68 pages. Added reference

    The Polytope Formalism: isomerism and associated unimolecular isomerisation

    Get PDF
    This thesis concerns the ontology of isomerism, this encompassing the conceptual frameworks and relationships that comprise the subject matter; the necessary formal definitions, nomenclature, and representations that have impacts reaching into unexpected areas such as drug registration and patent specifications; the requisite controlled and precise vocabulary that facilitates nuanced communication; and the digital/computational formalisms that underpin the chemistry software and database tools that empower chemists to perform much of their work. Using conceptual tools taken from Combinatorics, and Graph Theory, means are presented to provide a unified description of isomerism and associated unimolecular isomerisation spanning both constitutional isomerism and stereoisomerism called the Polytope Formalism. This includes unification of the varying approaches historically taken to describe and understand stereoisomerism in organic and inorganic compounds. Work for this Thesis began with the synthesis, isolation, and characterisation of compounds not adequately describable using existing IUPAC recommendations. Generalisation of the polytopal-rearrangements model of stereoisomerisation used for inorganic chemistry led to the prescriptions that could deal with the synthesised compounds, revealing an unrecognised fundamental form of isomerism called akamptisomerism. Following on, this Thesis describes how in attempting to place akamptisomerism within the context of existing stereoisomerism reveals significant systematic deficiencies in the IUPAC recommendations. These shortcomings have limited the conceptualisation of broad classes of compounds and hindered development of molecules for medicinal and technological applications. It is shown how the Polytope Formalism can be applied to the description of constitutional isomerism in a practical manner. Finally, a radically different medicinal chemistry design strategy with broad application, based upon the principles, is describe

    Commemorative Issue in Honor of Professor Karlheinz Schwarz on the Occasion of His 80th Birthday

    Get PDF
    A collection of 18 scientific papers written in honor of Professor Karlheinz Schwarz's 80th birthday. The main topics include spectroscopy, excited states, DFT developments, results analysis, solid states, and surfaces

    TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations

    Get PDF
    TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted
    corecore