401 research outputs found

    Total edge irregularity strength of complete graphs and complete bipartite graphs

    Get PDF
    AbstractA total edge irregular k-labelling ν of a graph G is a labelling of the vertices and edges of G with labels from the set {1,…,k} in such a way that for any two different edges e and f their weights φ(f) and φ(e) are distinct. Here, the weight of an edge g=uv is φ(g)=ν(g)+ν(u)+ν(v), i. e. the sum of the label of g and the labels of vertices u and v. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of G.We have determined the exact value of the total edge irregularity strength of complete graphs and complete bipartite graphs

    Minimum-Weight Edge Discriminator in Hypergraphs

    Full text link
    In this paper we introduce the concept of minimum-weight edge-discriminators in hypergraphs, and study its various properties. For a hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), a function λ:VZ+{0}\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\} is said to be an {\it edge-discriminator} on H\mathcal H if vEiλ(v)>0\sum_{v\in E_i}{\lambda(v)}>0, for all hyperedges EiEE_i\in \mathcal E, and vEiλ(v)vEjλ(v)\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}, for every two distinct hyperedges Ei,EjEE_i, E_j \in \mathcal E. An {\it optimal edge-discriminator} on H\mathcal H, to be denoted by λH\lambda_\mathcal H, is an edge-discriminator on H\mathcal H satisfying vVλH(v)=minλvVλ(v)\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}, where the minimum is taken over all edge-discriminators on H\mathcal H. We prove that any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n|\mathcal E|=n, satisfies vVλH(v)n(n+1)/2\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq n(n+1)/2, and equality holds if and only if the elements of E\mathcal E are mutually disjoint. For rr-uniform hypergraphs H=(V,E)\mathcal H=(\mathcal V, \mathcal E), it follows from results on Sidon sequences that vVλH(v)Vr+1+o(Vr+1)\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1}), and the bound is attained up to a constant factor by the complete rr-uniform hypergraph. Next, we construct optimal edge-discriminators for some special hypergraphs, which include paths, cycles, and complete rr-partite hypergraphs. Finally, we show that no optimal edge-discriminator on any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n(3)|\mathcal E|=n (\geq 3), satisfies vVλH(v)=n(n+1)/21\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=n(n+1)/2-1, which, in turn, raises many other interesting combinatorial questions.Comment: 22 pages, 5 figure

    THE TOTAL IRREGULARITY STRENGTH OF SOME COMPLETE BIPARTITE GRAPHS

    Get PDF
    This paper deals with the total irregularity strength of complete bipartite graph  where  and . &nbsp

    On H-irregularity Strengths of G-amalgamation of Graphs

    Full text link
    A simple graph G=(V(G),E(G)) admits an H-covering if every edge in E(G) belongs at least to one subgraph of G isomorphic to a given graph H. Then the graph G admitting H-covering admits an H-irregular total k-labeling f: V(G) U E(G) \to {1, 2, ..., k} if for every two different subgraphs H\u27 and H\u27\u27 isomorphic to H there is wtf(H2˘7)wtf(H2˘72˘7)wt_{f}(H\u27) \neq wt_{f}(H\u27\u27), where wtf(H)=vV(H)f(v)+eE(H)f(e)wt_{f}(H)= \sum \limits_{v\in V(H)} f(v) + \sum \limits_{e \in E(H)} f(e) is the associated H-weight. The minimum k for which the graph G has an H-irregular total k-labeling is called the total H-irregularity strength of the graph G.In this paper, we obtain the precise value of the total H-irregularity strength of G-amalgamation of graphs

    Further Results on (a, d) -total Edge Irregularity Strength of Graphs

    Get PDF
    ليكن  رسمًا بيانيًا بسيطًا على رؤوس l وحواف m مع إجمالي h -  وضع العلامات  . فان   تسمى (ا,د)- وسم غير منتظم للحافة الإجمالية إذا وجد تطابق متقابل وليكن   معرفة بواسطة   لكل   , حيث  . كذلك قيمة  يقال لها وزن الحافة . يشار الى (ا,د)-اجمالي قوة عدم انتظام الحواف للرسم البياني G ب  وهي اقل h التي يقبلها G   للحافة -(ا,د) الغير منتظمة للعلامة-h . في هذه المقالة تم فحص,  لبعض عائلات الرسم البياني الشائعة. بالاضافة الى ذلك تم حل المسالة المفتوحة  بشكل ايجابي. م تسمى ρ (أ ، د) - وسم غير منتظم للحافة الإجمالية إذا كان هناك تطابق واحد لواحد ، قل ψ: E (G) → {a ، a + d ، a + 2d ،… + a + (m- 1) د} محدد بواسطة ψ (uv) = ρ (u) + ρ (v) + ρ (uv) لجميع uv∈E (G) ، حيث a≥3 ، d≥2. أيضًا ، يُقال إن القيمة ψ (uv) هي وزن حافة الأشعة فوق البنفسجية. يشار إلى قوة عدم انتظام الحافة الإجمالية (أ ، د) للرسم البياني G بواسطة (a ، d) -tes (G) وهي أقل h التي يقبلها G (أ ، د) - علامة h غير منتظمة للحافة. في هذه المقالة ، يتم فحص (أ ، د) -tes (G) لبعض عائلات الرسم البياني الشائعة. بالإضافة إلى ذلك ، يتم حل المشكلة المفتوحة (3،2) - tes (K_ (m ، n)) ، m ، n> 2 بشكل إيجابي.Consider a simple graph   on vertices and edges together with a total  labeling . Then ρ is called total edge irregular labeling if there exists a one-to-one correspondence, say  defined by  for all  where  Also, the value  is said to be the edge weight of . The total edge irregularity strength of the graph G is indicated by  and is the least  for which G admits   edge irregular h-labeling.  In this article,   for some common graph families are examined. In addition, an open problem is solved affirmatively

    The 1-2-3 Conjecture for Hypergraphs

    Full text link
    A weighting of the edges of a hypergraph is called vertex-coloring if the weighted degrees of the vertices yield a proper coloring of the graph, i.e., every edge contains at least two vertices with different weighted degrees. In this paper we show that such a weighting is possible from the weight set {1,2,...,r+1} for all hypergraphs with maximum edge size r>3 and not containing edges solely consisting of identical vertices. The number r+1 is best possible for this statement. Further, the weight set {1,2,3,4,5} is sufficient for all hypergraphs with maximum edge size 3, up to some trivial exceptions.Comment: 12 page
    corecore