1,693 research outputs found

    An Order-based Algorithm for Minimum Dominating Set with Application in Graph Mining

    Full text link
    Dominating set is a set of vertices of a graph such that all other vertices have a neighbour in the dominating set. We propose a new order-based randomised local search (RLSo_o) algorithm to solve minimum dominating set problem in large graphs. Experimental evaluation is presented for multiple types of problem instances. These instances include unit disk graphs, which represent a model of wireless networks, random scale-free networks, as well as samples from two social networks and real-world graphs studied in network science. Our experiments indicate that RLSo_o performs better than both a classical greedy approximation algorithm and two metaheuristic algorithms based on ant colony optimisation and local search. The order-based algorithm is able to find small dominating sets for graphs with tens of thousands of vertices. In addition, we propose a multi-start variant of RLSo_o that is suitable for solving the minimum weight dominating set problem. The application of RLSo_o in graph mining is also briefly demonstrated

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    The Homogeneous Broadcast Problem in Narrow and Wide Strips

    Get PDF
    Let PP be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let s∈Ps\in P be a given source node. Each node pp can transmit information to all other nodes within unit distance, provided pp is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source ss can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem (in the latter, ss must be able to reach every node within a specified number of hops), with the restriction that all points lie inside a strip of width ww. We almost completely characterize the complexity of both the regular and the hop-bounded versions as a function of the strip width ww.Comment: 50 pages, WADS 2017 submissio
    • …
    corecore