3,579 research outputs found

    On the approximability of the maximum induced matching problem

    Get PDF
    In this paper we consider the approximability of the maximum induced matching problem (MIM). We give an approximation algorithm with asymptotic performance ratio <i>d</i>-1 for MIM in <i>d</i>-regular graphs, for each <i>d</i>≥3. We also prove that MIM is APX-complete in <i>d</i>-regular graphs, for each <i>d</i>≥3

    Paired domination on interval and circular-arc graphs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: L. Y. Kang2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Super-exponential extinction time of the contact process on random geometric graphs

    Full text link
    In this paper, we prove lower and upper bounds for the extinction time of the contact process on random geometric graphs with connecting radius tending to infinity. We obtain that for any infection rate λ>0\lambda >0, the contact process on these graphs survives a time super-exponential in the number of vertices.Comment: Accepted for publication in Combinatorics, Probability and Computin

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds

    Stationary random metrics on hierarchical graphs via (min,+)(\min,+)-type recursive distributional equations

    Full text link
    This paper is inspired by the problem of understanding in a mathematical sense the Liouville quantum gravity on surfaces. Here we show how to define a stationary random metric on self-similar spaces which are the limit of nice finite graphs: these are the so-called hierarchical graphs. They possess a well-defined level structure and any level is built using a simple recursion. Stopping the construction at any finite level, we have a discrete random metric space when we set the edges to have random length (using a multiplicative cascade with fixed law mm). We introduce a tool, the cut-off process, by means of which one finds that renormalizing the sequence of metrics by an exponential factor, they converge in law to a non-trivial metric on the limit space. Such limit law is stationary, in the sense that glueing together a certain number of copies of the random limit space, according to the combinatorics of the brick graph, the obtained random metric has the same law when rescaled by a random factor of law mm. In other words, the stationary random metric is the solution of a distributional equation. When the measure mm has continuous positive density on R+\mathbf{R}_+, the stationary law is unique up to rescaling and any other distribution tends to a rescaled stationary law under the iterations of the hierarchical transformation. We also investigate topological and geometric properties of the random space when mm is log\log-normal, detecting a phase transition influenced by the branching random walk associated to the multiplicative cascade.Comment: 75 pages, 16 figures. This is a substantial improvement of the first version: title changed (formerly "Quantum gravity and (min,+)-type recursive distributional equations"), the presentation has been restyled and new main results adde

    Percolation games, probabilistic cellular automata, and the hard-core model

    Full text link
    Let each site of the square lattice Z2\mathbb{Z}^2 be independently assigned one of three states: a \textit{trap} with probability pp, a \textit{target} with probability qq, and \textit{open} with probability 1pq1-p-q, where 0<p+q<10<p+q<1. Consider the following game: a token starts at the origin, and two players take turns to move, where a move consists of moving the token from its current site xx to either x+(0,1)x+(0,1) or x+(1,0)x+(1,0). A player who moves the token to a trap loses the game immediately, while a player who moves the token to a target wins the game immediately. Is there positive probability that the game is \emph{drawn} with best play -- i.e.\ that neither player can force a win? This is equivalent to the question of ergodicity of a certain family of elementary one-dimensional probabilistic cellular automata (PCA). These automata have been studied in the contexts of enumeration of directed lattice animals, the golden-mean subshift, and the hard-core model, and their ergodicity has been noted as an open problem by several authors. We prove that these PCA are ergodic, and correspondingly that the game on Z2\mathbb{Z}^2 has no draws. On the other hand, we prove that certain analogous games \emph{do} exhibit draws for suitable parameter values on various directed graphs in higher dimensions, including an oriented version of the even sublattice of Zd\mathbb{Z}^d in all d3d\geq3. This is proved via a dimension reduction to a hard-core lattice gas in dimension d1d-1. We show that draws occur whenever the corresponding hard-core model has multiple Gibbs distributions. We conjecture that draws occur also on the standard oriented lattice Zd\mathbb{Z}^d for d3d\geq 3, but here our method encounters a fundamental obstacle.Comment: 35 page
    corecore