12,266 research outputs found

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    A Fast and Scalable Graph Coloring Algorithm for Multi-core and Many-core Architectures

    Full text link
    Irregular computations on unstructured data are an important class of problems for parallel programming. Graph coloring is often an important preprocessing step, e.g. as a way to perform dependency analysis for safe parallel execution. The total run time of a coloring algorithm adds to the overall parallel overhead of the application whereas the number of colors used determines the amount of exposed parallelism. A fast and scalable coloring algorithm using as few colors as possible is vital for the overall parallel performance and scalability of many irregular applications that depend upon runtime dependency analysis. Catalyurek et al. have proposed a graph coloring algorithm which relies on speculative, local assignment of colors. In this paper we present an improved version which runs even more optimistically with less thread synchronization and reduced number of conflicts compared to Catalyurek et al.'s algorithm. We show that the new technique scales better on multi-core and many-core systems and performs up to 1.5x faster than its predecessor on graphs with high-degree vertices, while keeping the number of colors at the same near-optimal levels.Comment: To appear in the proceedings of Euro Par 201

    On edge-group choosability of graphs

    Full text link
    In this paper, we study the concept of edge-group choosability of graphs. We say that G is edge k-group choosable if its line graph is k-group choosable. An edge-group choosability version of Vizing conjecture is given. The evidence of our claim are graphs with maximum degree less than 4, planar graphs with maximum degree at least 11, planar graphs without small cycles, outerplanar graphs and near-outerplanar graphs

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    On the Number of Synchronizing Colorings of Digraphs

    Full text link
    We deal with kk-out-regular directed multigraphs with loops (called simply \emph{digraphs}). The edges of such a digraph can be colored by elements of some fixed kk-element set in such a way that outgoing edges of every vertex have different colors. Such a coloring corresponds naturally to an automaton. The road coloring theorem states that every primitive digraph has a synchronizing coloring. In the present paper we study how many synchronizing colorings can exist for a digraph with nn vertices. We performed an extensive experimental investigation of digraphs with small number of vertices. This was done by using our dedicated algorithm exhaustively enumerating all small digraphs. We also present a series of digraphs whose fraction of synchronizing colorings is equal to 11/kd1-1/k^d, for every d1d \ge 1 and the number of vertices large enough. On the basis of our results we state several conjectures and open problems. In particular, we conjecture that 11/k1-1/k is the smallest possible fraction of synchronizing colorings, except for a single exceptional example on 6 vertices for k=2k=2.Comment: CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_1
    corecore