282 research outputs found

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page

    On the tree-width of knot diagrams

    Get PDF
    We show that a small tree-decomposition of a knot diagram induces a small sphere-decomposition of the corresponding knot. This, in turn, implies that the knot admits a small essential planar meridional surface or a small bridge sphere. We use this to give the first examples of knots where any diagram has high tree-width. This answers a question of Burton and of Makowsky and Mari\~no.Comment: 14 pages, 6 figures. V2: Minor updates to expositio

    Optimal Networks from Error Correcting Codes

    Full text link
    To address growth challenges facing large Data Centers and supercomputing clusters a new construction is presented for scalable, high throughput, low latency networks. The resulting networks require 1.5-5 times fewer switches, 2-6 times fewer cables, have 1.2-2 times lower latency and correspondingly lower congestion and packet losses than the best present or proposed networks providing the same number of ports at the same total bisection. These advantage ratios increase with network size. The key new ingredient is the exact equivalence discovered between the problem of maximizing network bisection for large classes of practically interesting Cayley graphs and the problem of maximizing codeword distance for linear error correcting codes. Resulting translation recipe converts existent optimal error correcting codes into optimal throughput networks.Comment: 14 pages, accepted at ANCS 2013 conferenc

    Distributed match-making

    Get PDF
    In many distributed computing environments, processes are concurrently executed by nodes in a store- and-forward communication network. Distributed control issues as diverse as name server, mutual exclusion, and replicated data management involve making matches between such processes. We propose a formal problem called distributed match-making as the generic paradigm. Algorithms for distributed match-making are developed and the complexity is investigated in terms of messages and in terms of storage needed. Lower bounds on the complexity of distributed match-making are established. Optimal algorithms, or nearly optimal algorithms, are given for particular network topologies

    On Hardness of the Joint Crossing Number

    Full text link
    The Joint Crossing Number problem asks for a simultaneous embedding of two disjoint graphs into one surface such that the number of edge crossings (between the two graphs) is minimized. It was introduced by Negami in 2001 in connection with diagonal flips in triangulations of surfaces, and subsequently investigated in a general form for small-genus surfaces. We prove that all of the commonly considered variants of this problem are NP-hard already in the orientable surface of genus 6, by a reduction from a special variant of the anchored crossing number problem of Cabello and Mohar

    Diameter and Treewidth in Minor-Closed Graph Families

    Full text link
    It is known that any planar graph with diameter D has treewidth O(D), and this fact has been used as the basis for several planar graph algorithms. We investigate the extent to which similar relations hold in other graph families. We show that treewidth is bounded by a function of the diameter in a minor-closed family, if and only if some apex graph does not belong to the family. In particular, the O(D) bound above can be extended to bounded-genus graphs. As a consequence, we extend several approximation algorithms and exact subgraph isomorphism algorithms from planar graphs to other graph families.Comment: 15 pages, 12 figure
    • …
    corecore