3,277 research outputs found

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    © 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed

    Torque vectoring based drive assistance system for turning an electric narrow tilting vehicle

    Get PDF
    The increasing number of cars leads to traffic congestion and limits parking issue in urban area. The narrow tilting vehicles therefore can potentially become the next generation of city cars due to its narrow width. However, due to the difficulty in leaning a narrow tilting vehicle, a drive assistance strategy is required to maintain its roll stability during a turn. This article presents an effective approach using torque vectoring method to assist the rider in balancing the narrow tilting vehicles, thus reducing the counter-steering requirements. The proposed approach is designed as the combination of two torque controllers: steer angle–based torque vectoring controller and tilting compensator–based torque vectoring controller. The steer angle–based torque vectoring controller reduces the counter-steering process via adjusting the vectoring torque based on the steering angle from the rider. Meanwhile, the tilting compensator–based torque vectoring controller develops the steer angle–based torque vectoring with an additional tilting compensator to help balancing the leaning behaviour of narrow tilting vehicles. Numerical simulations with a number of case studies have been carried out to verify the performance of designed controllers. The results imply that the counter-steering process can be eliminated and the roll stability performance can be improved with the usage of the presented approach

    A torque vectoring optimal control strategy for combined vehicle dynamics performance enhancement and electric motor ageing minimisation*

    Get PDF
    In this paper we propose a control architecture that combines velocity, sideslip angle and yaw rate regulation with motor temperature regulation on a electric vehicle with four independent electric motors. The linear controller incorporates both the vehicle dynamics and the electric motor dynamics by combining a four-wheel vehicle model with a motor degradation model. It is found that the resulting controller not only enhances the vehicle stability of the vehicle, but also extends the lifetime of motors by regulating their temperatures

    Improved efficiency with adaptive front and rear axle independently driven powertrain and disconnect functionality

    Get PDF
    Front and rear axle independently driven (FRID) powertrains are becoming a popular solution for electric vehicles (EVs) due to torque distribution capability which can enhance powertrain energy efficiency. Typically, permanent magnet synchronous machines (PMSMs) are used for FRID powertrains due to their high torque, and power density. However, the drive-cycle efficiency of FRID powertrains with PMSMs is typically reduced in comparison to single motor drives. This is due to the unwanted no-load losses of PMSMs in the field weakening region. To overcome this drawback of PMSM FRIDs, this paper proposes an adaptive front- and rear-axle independently driven (AFRID) powertrain, utilizing two dog clutches, so that the powertrain can be operated in different modes (rear, front, and all-wheel drive) by adaptively connecting and disconnecting the front and/or rear electric drive unit (EDU). A rule-based mode selection strategy is developed to utilize the flexibility of different powertrain operating modes of the powertrain for maximizing the energy efficiency of the EDU. The simulation results show that the suggested AFRID powertrain, in comparison to a common FRID powertrain, can improve the WLTC drive-cycle consumption from 22.17 kWhh to 20.50 kWhh per 100 km. Based on the route and road-load information, the energy-saving potential of the AFRID powertrain can be further improved to 20.37 kWhh per 100 km by a suggested predictive mode selection strategy, achieving an optimal mode selection

    Acceleration-based wheel slip control realized with decentralised electric drivetrain systems

    Get PDF
    Traction control is one of the most important functions in vehicle drivetrain systems. When a vehicle is driven on a low-friction road surface, loss of traction force can cause the driven wheels to spin. This reduces vehicle acceleration performance and can even cause the driver to lose control of the vehicle. The high bandwidth of electric machine control in electric vehicles gives more possibilities to regulate driving torque on wheels and prevent wheel spin. An acceleration-based wheel slip control is designed and investigated. Compared to traditional slip-based traction control, the proposed method does not depend on the estimation of the vehicle speed and only relies on the driven wheel rotational acceleration. The control method is verified using the simulation of an electric vehicle with a decentralised electric drivetrain system. The vehicle and the electric drive are modelled in CarMaker and PLECS, respectively. The simulation results show that the proposed method is able to prevent the driven wheel from spinning when the vehicle is accelerated on an ice road. In addition, the control is fast enough and requires only half a second to reduce the wheel acceleration to a normal range

    Research and Implement of PMSM Regenerative Braking Control for Electric Vehicle

    Get PDF
    As the society pays more and more attention to the environment pollution and energy crisis, the electric vehicle (EV) development also entered in a new era. With the development of motor speed control technology and the improvement of motor performance, although the dynamic performance and economical cost of EVs are both better than the internal-combustion engine vehicle (ICEV), the driving range limit and charging station distribution are two major problems which limit the popularization of EVs. In order to extend driving range for EVs, regenerative braking (RB) emerges which is able to recover energy during the braking process to improve the energy efficiency. This thesis aims to investigate the RB based pure electric braking system and its implementation. There are many forms of RB system such as fully electrified braking system and blended braking system (BBS) which is equipped both electric RB system and hydraulic braking (HB) system. In this thesis the main research objective is the RB based fully electrified braking system, however, RB system cannot satisfy all braking situation only by itself. Because the regenerating electromagnetic torque may be too small to meet the braking intention of the driver when the vehicle speed is very low and the regenerating electromagnetic torque may be not enough to stop the vehicle as soon as possible in the case of emergency braking. So, in order to ensure braking safety and braking performance, braking torque should be provided with different forms regarding different braking situation and different braking intention. In this thesis, braking torque is classified into three types. First one is normal reverse current braking when the vehicle speed is too low to have enough RB torque. Second one is RB torque which could recover kinetic energy by regenerating electricity and collecting electric energy into battery packs. The last braking situation is emergency where the braking torque is provided by motor plugging braking based on the optimal slip ratio braking control strategy. Considering two indicators of the RB system which are regenerative efficiency and braking safety, a trade-off point should be found and the corresponding control strategy should be designed. In this thesis, the maximum regenerative efficiency is obtained by a braking torque distribution strategy between front wheel and rear wheel based on a maximum available RB torque estimation method and ECE-R13 regulation. And the emergency braking performance is ensured by a novel fractional-order integral sliding mode control (FOISMC) and numerical simulations show that the control performance is better than the conventional sliding mode controller

    Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer

    Get PDF
    A stabilizing observer-based control algorithm for an in-wheel-motored vehicle is proposed, which generates direct yaw moment to compensate for the state deviations. The control scheme is based on a fuzzy rule-based body slip angle (beta) observer. In the design strategy of the fuzzy observer, the vehicle dynamics is represented by Takagi-Sugeno-like fuzzy models. Initially, local equivalent vehicle models are built using the linear approximations of vehicle dynamics for low and high lateral acceleration operating regimes, respectively. The optimal beta observer is then designed for each local model using Kalman filter theory. Finally, local observers are combined to form the overall control system by using fuzzy rules. These fuzzy rules represent the qualitative relationships among the variables associated with the nonlinear and uncertain nature of vehicle dynamics, such as tire force saturation and the influence of road adherence. An adaptation mechanism for the fuzzy membership functions has been incorporated to improve the accuracy and performance of the system. The effectiveness of this design approach has been demonstrated in simulations and in a real-time experimental settin

    Torque distribution strategy for a four In-wheel fully electric car

    Get PDF
    Jornadas de Automática, 2 - 4 de septiembre de 2015. BilbaoElectromobility promises to have a strong impact in several aspects of our life: introducing new means of transport concepts, proposing new business models and allowing to create new vehicle configurations impossible with traditional combustion engines. Regarding the latter, this paper presents a novel torque distribution strategy for a 4 in-wheel electric vehicle which aims to reduce the total longitudinal slip. The control strategy is designed off-line supported by a simulator and tested both in simulation (with a different model from the used for designing) as well as on a real sized prototype. The results show that the total longitudinal slip is successfully reduced after applying the control strategy and additionally, the radius described by the vehicle while cornering is slightly closer to the theoretical Ackerman radius.Ministerio de Economía y Competitividad DPI2013-46912-C2-
    corecore