30 research outputs found

    Self-Propelled Soft Everting Toroidal Robot for Navigation and Climbing in Confined Spaces

    Full text link
    There are many spaces inaccessible to humans where robots could help deliver sensors and equipment. Many of these spaces contain three-dimensional passageways and uneven terrain that pose challenges for robot design and control. Everting toroidal robots, which move via simultaneous eversion and inversion of their body material, are promising for navigation in these types of spaces. We present a novel soft everting toroidal robot that propels itself using a motorized device inside an air-filled membrane. Our robot requires only a single control signal to move, can conform to its environment, and can climb vertically with a motor torque that is independent of the force used to brace the robot against its environment. We derive and validate models of the forces involved in its motion, and we demonstrate the robot's ability to navigate a maze and climb a pipe.Comment: 7 pages and 8 figures. Accepted to IEEE Conference on Intelligent Robots and Systems (IROS 2022). Video available at https://youtu.be/R0TlKPLbM9

    A Tread/Limb/Serpentine Hybrid Robot: Toward Hypermobility in Deconstructed Environments

    Get PDF
    According to the Red Cross, an average of over 600 disasters and 100,000 associated deaths occur annually throughout the world. This frequency of disasters strains an already overburdened disaster response effort. In the first 48 hours of a rescue operation, it is estimated that a responder will get less than three hours of continuous sleep as they need to work at full force to set up the operation and begin work in the field. This leads to sleep deprivation during the most critical time for search and rescue of victims. Therefore, robots are greatly needed as a force multiplier in USAR response to reduce some of the burden and workload placed on the human rescue workers to make for a more efficient and effective response

    Rapid Pole Climbing with a Quadrupedal Robot

    Get PDF
    This paper describes the development of a legged robot designed for general locomotion of complex terrain but specialized for dynamical, high-speed climbing of a uniformly convex cylindrical structure, such as an outdoor telephone pole. This robot, the RiSE V3 climbing machine—mass 5.4 kg, length 70 cm, excluding a 28 cm tail appendage—includes several novel mechanical features, including novel linkage designs for its legs and a non-backdrivable, energy-dense power transmission to enable high-speed climbing. We summarize the robot’s design and document a climbing behavior that achieves rapid ascent of a wooden telephone pole at 21 cm/s, a speed previously unachieved—and, we believe, heretofore impossible—with a robot of this scale. The behavioral gait of the robot employs the mechanical design to propel the body forward while passively maintaining yaw, pitch, and roll stability during climbing locomotion. The robot’s general-purpose legged design coupled with its specialized ability to quickly gain elevation and park at a vertical station silently with minimal energy consumption suggest potential applications including search and surveillance operations as well as ad hoc networking

    Heterogeneous Drive Mechanisms for Novel Locomotion in Rough Terrain

    Get PDF
    The smaller the robot the easier it is for it to access voids in a collapsed structure, however small size brings a host of other problems related to constrained resources. One of the primary constraints on small robots is limited motive power to surmount obstacles and navigate rough terrain. This thesis examines the addition of bulk motive force actuators to existing locomotion platforms and the impact of these heterogeneous actuators on conventional steering methods. The steering methods examined are those associated with skid steered vehicles and differential drive vehicles. In developing the Crabinator, a robot composed of a limbed crawler module and a single track drive module, it appeared that the resulting robot did not fit in the regime of differential drive. For that reason the heterogeneous differential drive class was developed. Similarly for the water hammer active tether module this system also did not appear to be a heterogeneous differential drive or skid steered vehicles. This system turned out to be even more general hence the more general class of heterogeneous drive vehicles which has input of accelerations rather then velocities as the previously mentioned classes

    Rapid pole climbing with a quadrupedal robot

    Full text link

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion
    corecore