384 research outputs found

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance

    Performance Improvement of Topology-Transparent Broadcast Scheduling in Mobile Ad Hoc Networks

    Get PDF
    published_or_final_versio

    Topology-Transparent Broadcast Scheduling with Erasure Coding in Wireless Networks

    Get PDF
    published_or_final_versio

    Topology-transparent distributed multicast and broadcast scheduling in mobile ad hoc networks

    Get PDF
    Transmission scheduling is a key problem in mobile ad hoc networks. Many transmission scheduling algorithms have been proposed to maximize the spatial reuse and minimize the time-division multiple-access (TDMA) frame length in mobile ad hoc networks. Most algorithms are dependent on the exact network topology and cannot adapt to the dynamic topology in a mobile wireless network. To overcome this limitation, several topology-transparent scheduling algorithms have been proposed. The slots are assigned to guarantee that there is at least one collision-free time slot in each frame. In this paper, we consider multicast and broadcast, and propose a novel topology-transparent distributed scheduling algorithm. Instead of guaranteeing at least one collision-free transmission, the proposed algorithm guarantees one successful transmission exceeding a given probability, and achieves a much better average throughput. The simulation results show that the performance of our proposed algorithm is much better than the conventional TDMA and other existing algorithms in most cases. © 2012 IEEE.published_or_final_versio

    Topology-Transparent Scheduling in Mobile Ad Hoc Networks With Multiple Packet Reception Capability

    Get PDF
    Recent advances in the physical layer have enabled wireless devices to have multiple packet reception (MPR) capability, which is the capability of decoding more than one packet, simultaneously, when concurrent transmissions occur. In this paper, we focus on the interaction between the MPR physical layer and the medium access control (MAC) layer. Some random access MAC protocols have been proposed to improve the network performance by exploiting the powerful MPR capability. However, there are very few investigations on the schedule-based MAC protocols. We propose a novel m-MPR-l-code topology-transparent scheduling ((m, l)-TTS) algorithm for mobile ad hoc networks with MPR, where m indicates the maximum number of concurrent transmissions being decoded, and l is the number of codes assigned to each user. Our algorithm can take full advantage of the MPR capability to improve the network performance. The minimum guaranteed throughput and average throughput of our algorithm are studied analytically. The improvement of our (m, l)-TTS algorithm over the conventional topology-transparent scheduling algorithms with the collision-based reception model is linear with m. The simulation results show that our proposed algorithm performs better than slotted ALOHA as well.published_or_final_versio

    Robust Spatial Reuse Scheduling in Underwater Acoustic Communication Networks

    Full text link

    Adaptive topology-transparent distributed scheduling in wireless networks

    Get PDF
    Proceedings of the IEEE International Conference on Communications, 2010, p. 1-5Transmission scheduling is a key design problem in wireless multi-hop networks. Many transmission scheduling algorithms have been proposed to maximize the spatial reuse and minimize the time division multiple access (TDMA) frame length. Most of the scheduling algorithms are topology-dependent. They are generally graph-based and depend on the exact network topology information. Thus, they cannot adapt well to the dynamic wireless environment. In contrast, topology-transparent TDMA scheduling algorithms do not need detailed topology information. However, these algorithms offer very low minimum throughput. The objective of this work is to propose an adaptive topology-transparent scheduling algorithm to offer better throughput performance. With our algorithm, each node finds a transmission schedule so as to reduce the transmission conflicts and adapt better to the changing network environment. The simulation results show that the performance of our algorithm is better than the existing topology-transparent algorithms. ©2010 IEEE.published_or_final_versio

    Transparent Spectrum Co-Access in Cognitive Radio Networks

    Get PDF
    The licensed wireless spectrum is currently under-utilized by as much as 85%. Cognitive radio networks have been proposed to employ dynamic spectrum access to share this under-utilized spectrum between licensed primary user transmissions and unlicensed secondary user transmissions. Current secondary user opportunistic spectrum access methods, however, remain limited in their ability to provide enough incentive to convince primary users to share the licensed spectrum, and they rely on primary user absence to guarantee secondary user performance. These challenges are addressed by developing a Dynamic Spectrum Co-Access Architecture (DSCA) that allows secondary user transmissions to co-access transparently and concurrently with primary user transmissions. This work exploits dirty paper coding to precode the cognitive radio channel utilizing the redundant information found in primary user relay networks. Subsequently, the secondary user is able to provide incentive to the primary user through increased SINR to encourage licensed spectrum sharing. Then a region of co-accessis formulated within which any secondary user can co-access the licensed channel transparently to the primary user. In addition, a Spectrum Co-Access Protocol (SCAP) is developed to provide secondary users with guaranteed channel capacity and while minimizing channel access times. The numerical results show that the SCAP protocol build on the DSCA architecture is able to reduce secondary user channel access times compared with opportunistic spectrum access and increased secondary user network throughput. Finally, we present a novel method for increasing the secondary user channel capacity through sequential dirty paper coding. By exploiting similar redundancy in secondary user multi-hop networks as in primary user relay networks, the secondary user channel capacity can be increased. As a result of our work in overlay spectrum sharing through secondary user channel precoding, we provide a compelling argument that the current trend towards opportunistic spectrum sharing needs to be reconsidered. This work asserts that limitations of opportunistic spectrum access to transparently provide primary users incentive and its detrimental effect on secondary user performance due to primary user activity are enough to motivate further study into utilizing channel precoding schemes. The success of cognitive radios and its adoption into federal regulator policy will rely on providing just this type of incentive
    • …
    corecore