524 research outputs found

    Surface-based flow visualization

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/computers-and-graphics/.With increasing computing power, it is possible to process more complex fluid simulations. However, a gap between increasing\ud data size and our ability to visualize them still remains. Despite the great amount of progress that has been made in the field of\ud flow visualization over the last two decades, a number of challenges remain. Whilst the visualization of 2D flow has many good\ud solutions, the visualization of 3D flow still poses many problems. Challenges such as domain coverage, speed of computation, and\ud perception remain key directions for further research. Flow visualization with a focus on surface-based techniques forms the basis\ud of this literature survey, including surface construction techniques and visualization methods applied to surfaces. We detail our\ud investigation into these algorithms with discussions of their applicability and their relative strengths and drawbacks. We review the\ud most important challenges when considering such visualizations. The result is an up-to-date overview of the current state-of-the-art\ud that highlights both solved and unsolved problems in this rapidly evolving branch of research

    ANALYSIS AND VISUALIZATION OF FLOW FIELDS USING INFORMATION-THEORETIC TECHNIQUES AND GRAPH-BASED REPRESENTATIONS

    Get PDF
    Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms

    Interactive visualization of computational fluid dynamics data.

    Get PDF
    This thesis describes a literature study and a practical research in the area of flow visualization, with special emphasis on the interactive visualization of Computational Fluid Dynamics (CFD) datasets. Given the four main categories of flow visualization methodology; direct, geometric, texture-based and feature-based flow visualization, the research focus of our thesis is on the direct, geometric and feature-based techniques. And the feature-based flow visualization is highlighted in this thesis. After we present an overview of the state-of-the-art of the recent developments in the flow visualization in higher spatial dimensions (2.5D, 3D and 4D), we propose a fast, simple, and interactive glyph placement algorithm for investigating and visualizing boundary flow data based on unstructured, adaptive resolution boundary meshes from CFD dataset. Afterward, we propose a novel, automatic mesh-driven vector field clustering algorithm which couples the properties of the vector field and resolution of underlying mesh into a unified distance measure for producing high-level, intuitive and suggestive visualization of large, unstructured, adaptive resolution boundary CFD meshes based vector fields. Next we present a novel application with multiple-coordinated views for interactive information-assisted visualization of multidimensional marine turbine CFD data. Information visualization techniques are combined with user interaction to exploit our cognitive ability for intuitive extraction of flow features from CFD datasets. Later, we discuss the design and implementation of each visualization technique used in our interactive flow visualization framework, such as glyphs, streamlines, parallel coordinate plots, etc. In this thesis, we focus on the interactive visualization of the real-world CFD datasets, and present a number of new methods or algorithms to address several related challenges in flow visualization. We strongly believe that the user interaction is a crucial part of an effective data analysis and visualization of large and complex datasets such as CFD datasets we use in this thesis. In order to demonstrate the use of the proposed techniques in this thesis, CFD domain experts reviews are also provided

    ENABLING TECHNIQUES FOR EXPRESSIVE FLOW FIELD VISUALIZATION AND EXPLORATION

    Get PDF
    Flow visualization plays an important role in many scientific and engineering disciplines such as climate modeling, turbulent combustion, and automobile design. The most common method for flow visualization is to display integral flow lines such as streamlines computed from particle tracing. Effective streamline visualization should capture flow patterns and display them with appropriate density, so that critical flow information can be visually acquired. In this dissertation, we present several approaches that facilitate expressive flow field visualization and exploration. First, we design a unified information-theoretic framework to model streamline selection and viewpoint selection as symmetric problems. Two interrelated information channels are constructed between a pool of candidate streamlines and a set of sample viewpoints. Based on these information channels, we define streamline information and viewpoint information to select best streamlines and viewpoints, respectively. Second, we present a focus+context framework to magnify small features and reduce occlusion around them while compacting the context region in a full view. This framework parititions the volume into blocks and deforms them to guide streamline repositioning. The desired deformation is formulated into energy terms and achieved by minimizing the energy function. Third, measuring the similarity of integral curves is fundamental to many tasks such as feature detection, pattern querying, streamline clustering and hierarchical exploration. We introduce FlowString that extracts shape invariant features from streamlines to form an alphabet of characters, and encodes each streamline into a string. The similarity of two streamline segments then becomes a specially designed edit distance between two strings. Leveraging the suffix tree, FlowString provides a string-based method for exploratory streamline analysis and visualization. A universal alphabet is learned from multiple data sets to capture basic flow patterns that exist in a variety of flow fields. This allows easy comparison and efficient query across data sets. Fourth, for exploration of vascular data sets, which contain a series of vector fields together with multiple scalar fields, we design a web-based approach for users to investigate the relationship among different properties guided by histograms. The vessel structure is mapped from the 3D volume space to a 2D graph, which allow more efficient interaction and effective visualization on websites. A segmentation scheme is proposed to divide the vessel structure based on a user specified property to further explore the distribution of that property over space
    • …
    corecore