261 research outputs found

    A Fair and Secure Cluster Formation Process for Ad Hoc Networks

    Get PDF
    An efficient approach for organizing large ad hoc networks is to divide the nodes into multiple clusters and designate, for each cluster, a clusterhead which is responsible for holding intercluster control information. The role of a clusterhead entails rights and duties. On the one hand, it has a dominant position in front of the others because it manages the connectivity and has access to other node¿s sensitive information. But on the other hand, the clusterhead role also has some associated costs. Hence, in order to prevent malicious nodes from taking control of the group in a fraudulent way and avoid selfish attacks from suitable nodes, the clusterhead needs to be elected in a secure way. In this paper we present a novel solution that guarantees the clusterhead is elected in a cheat-proof manner

    FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Get PDF
    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms

    Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    Get PDF
    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks

    FLOC-SPANNER: An O(1) time, locally self-stabilizing algorithm for geometric spanner construction in a wireless sensor network

    Get PDF
    Geometric spanners are a popular form of topology control in wireless networks because they yield an efficient, reduced interference subgraph for both unicast and broadcast routing.;In this thesis work a distributed algorithm for creation of geometric spanners in a wireless sensor network is presented. Given any connected network, we show that the algorithm terminates in O(1) time, irrespective of network size. Our algorithm uses an underlying clustering algorithm as a foundation for creating spanners, and only relies on the periodic heartbeat messages associated with cluster maintenance for the creation of the spanners. The algorithm is also shown to stabilize locally in the presence of node additions and deletions. The performance of our algorithm is verified using large scale simulations. The average path length ratio for routing along the spanner for large networks is shown to be less than 2.;Geometric Spanners is a well-researched topic. The algorithm presented in this thesis differs from other spanner algorithms in the following ways: 1. It is a distributed locally self-stabilizing algorithm. 2. It does not require location information for its operation. 3. Creates spanner network in constant time irrespective of network size and network density

    FLOC-SPANNER: An (1) O ( 1 ) Time, Locally Self-Stabilizing Algorithm for Geometric Spanner Construction in a Wireless Sensor Network

    Get PDF
    We present a distributed algorithm for creation of geometric spanners in a wireless sensor network. Given any connected network, we show that the algorithm terminates in O(1) role= presentation style= display: inline; line-height: normal; font-size: 16px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3e(1)O(1) time, irrespective of network size. Our algorithm uses an underlying clustering algorithm as a foundation for creating spanners and only relies on the periodic heartbeat messages associated with cluster maintenance for the creation of the spanners. The algorithm is also shown to stabilize locally in the presence of node additions and deletions. The performance of our algorithm is verified using large scale simulations. The average path length ratio for routing along the spanner for large networks is shown to be less than 2

    TECA : A Topology and Energy Control Algorithm for Sensor Networks

    Full text link
    A main challenge in the field of sensor networks is energy efficiency to prolong the sensor's operational lifetime. Due to low-cost hardware, nodes' placement or hardware design, recharging might be impossible. Since most energy is spent for radio communication, many approaches exist that put sensor nodes into sleep mode with the communication radio turned off. In this paper, we propose a new Topology and Energy Control Algorithm called TECA. We will show the performance of TECA by means of extensive simulations compared to two other approaches. In terms of operational lifetime, packet delivery and network connectivity, TECA shows promising results. Unlike many other simulations, we use an appropriate link loss model that was verified in reality. By measuring packet delivery rates, TECA is able to adapt to different environments while still maintaining network connectivity

    FLOC-SPANNER: An Time, Locally Self-Stabilizing Algorithm for Geometric Spanner Construction in a Wireless Sensor Network

    Get PDF
    We present a distributed algorithm for creation of geometric spanners in a wireless sensor network. Given any connected network, we show that the algorithm terminates in time, irrespective of network size. Our algorithm uses an underlying clustering algorithm as a foundation for creating spanners and only relies on the periodic heartbeat messages associated with cluster maintenance for the creation of the spanners. The algorithm is also shown to stabilize locally in the presence of node additions and deletions. The performance of our algorithm is verified using large scale simulations. The average path length ratio for routing along the spanner for large networks is shown to be less than 2

    On Clustering in Sensor Networks

    Get PDF
    corecore