3,516 research outputs found

    Automating Topology Aware Mapping for Supercomputers

    Get PDF
    Petascale machines with hundreds of thousands of cores are being built. These machines have varying interconnect topologies and large network diameters. Computation is cheap and communication on the network is becoming the bottleneck for scaling of parallel applications. Network contention, specifically, is becoming an increasingly important factor affecting overall performance. The broad goal of this dissertation is performance optimization of parallel applications through reduction of network contention. Most parallel applications have a certain communication topology. Mapping of tasks in a parallel application based on their communication graph, to the physical processors on a machine can potentially lead to performance improvements. Mapping of the communication graph for an application on to the interconnect topology of a machine while trying to localize communication is the research problem under consideration. The farther different messages travel on the network, greater is the chance of resource sharing between messages. This can create contention on the network for networks commonly used today. Evaluative studies in this dissertation show that on IBM Blue Gene and Cray XT machines, message latencies can be severely affected under contention. Realizing this fact, application developers have started paying attention to the mapping of tasks to physical processors to minimize contention. Placement of communicating tasks on nearby physical processors can minimize the distance traveled by messages and reduce the chances of contention. Performance improvements through topology aware placement for applications such as NAMD and OpenAtom are used to motivate this work. Building on these ideas, the dissertation proposes algorithms and techniques for automatic mapping of parallel applications to relieve the application developers of this burden. The effect of contention on message latencies is studied in depth to guide the design of mapping algorithms. The hop-bytes metric is proposed for the evaluation of mapping algorithms as a better metric than the previously used maximum dilation metric. The main focus of this dissertation is on developing topology aware mapping algorithms for parallel applications with regular and irregular communication patterns. The automatic mapping framework is a suite of such algorithms with capabilities to choose the best mapping for a problem with a given communication graph. The dissertation also briefly discusses completely distributed mapping techniques which will be imperative for machines of the future.published or submitted for publicationnot peer reviewe

    Model-driven Scheduling for Distributed Stream Processing Systems

    Full text link
    Distributed Stream Processing frameworks are being commonly used with the evolution of Internet of Things(IoT). These frameworks are designed to adapt to the dynamic input message rate by scaling in/out.Apache Storm, originally developed by Twitter is a widely used stream processing engine while others includes Flink, Spark streaming. For running the streaming applications successfully there is need to know the optimal resource requirement, as over-estimation of resources adds extra cost.So we need some strategy to come up with the optimal resource requirement for a given streaming application. In this article, we propose a model-driven approach for scheduling streaming applications that effectively utilizes a priori knowledge of the applications to provide predictable scheduling behavior. Specifically, we use application performance models to offer reliable estimates of the resource allocation required. Further, this intuition also drives resource mapping, and helps narrow the estimated and actual dataflow performance and resource utilization. Together, this model-driven scheduling approach gives a predictable application performance and resource utilization behavior for executing a given DSPS application at a target input stream rate on distributed resources.Comment: 54 page

    Improving efficiency and resilience in large-scale computing systems through analytics and data-driven management

    Full text link
    Applications running in large-scale computing systems such as high performance computing (HPC) or cloud data centers are essential to many aspects of modern society, from weather forecasting to financial services. As the number and size of data centers increase with the growing computing demand, scalable and efficient management becomes crucial. However, data center management is a challenging task due to the complex interactions between applications, middleware, and hardware layers such as processors, network, and cooling units. This thesis claims that to improve robustness and efficiency of large-scale computing systems, significantly higher levels of automated support than what is available in today's systems are needed, and this automation should leverage the data continuously collected from various system layers. Towards this claim, we propose novel methodologies to automatically diagnose the root causes of performance and configuration problems and to improve efficiency through data-driven system management. We first propose a framework to diagnose software and hardware anomalies that cause undesired performance variations in large-scale computing systems. We show that by training machine learning models on resource usage and performance data collected from servers, our approach successfully diagnoses 98% of the injected anomalies at runtime in real-world HPC clusters with negligible computational overhead. We then introduce an analytics framework to address another major source of performance anomalies in cloud data centers: software misconfigurations. Our framework discovers and extracts configuration information from cloud instances such as containers or virtual machines. This is the first framework to provide comprehensive visibility into software configurations in multi-tenant cloud platforms, enabling systematic analysis for validating the correctness of software configurations. This thesis also contributes to the design of robust and efficient system management methods that leverage continuously monitored resource usage data. To improve performance under power constraints, we propose a workload- and cooling-aware power budgeting algorithm that distributes the available power among servers and cooling units in a data center, achieving up to 21% improvement in throughput per Watt compared to the state-of-the-art. Additionally, we design a network- and communication-aware HPC workload placement policy that reduces communication overhead by up to 30% in terms of hop-bytes compared to existing policies.2019-07-02T00:00:00

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Mapping applications with collectives over sub-communicators on torus networks

    Get PDF
    pre-printThe placement of tasks in a parallel application on specific nodes of a supercomputer can significantly impact performance. Traditionally, this task mapping has focused on reducing the distance between communicating tasks on the physical network. This minimizes the number of hops that point-to-point messages travel and thus reduces link sharing between messages and contention. However, for applications that use collectives over sub-communicators, this heuristic may not be optimal. Many collectives can benefit from an increase in bandwidth even at the cost of an increase in hop count, especially when sending large messages. For example, placing communicating tasks in a cube configuration rather than a plane or a line on a torus network increases the number of possible paths messages might take. This increases the available bandwidth which can lead to significant performance gains. We have developed Rubik, a tool that provides a simple and intuitive interface to create a wide variety of mappings for structured communication patterns. Rubik supports a number of elementary operations such as splits, tilts, or shifts, that can be combined into a large number of unique patterns. Each operation can be applied to disjoint groups of processes involved in collectives to increase the effective bandwidth. We demonstrate the use of Rubik for improving performance of two parallel codes, pF3D and Qbox, which use collectives over sub-communicators
    corecore