4,053 research outputs found

    Distributed algorithms for green IP networks2012 Proceedings IEEE INFOCOM Workshops

    Get PDF
    We propose a novel distributed approach to exploit sleep mode capabilities of links in an Internet Service Provider network. Differently from other works, neither a central controller, nor the knowledge of the current traffic matrix is assumed, favoring a major step towards making sleep mode enabled networks practical in the current Internet architecture. Our algorithms are able to automatically adapt the state of network links to the actual traffic in the network. Moreover, the required input parameters are intuitive and easy to set. Extensive simulations that consider a real network and traffic demand prove that our algorithms are able to follow the daily variation of traffic, reducing energy consumption up to 70% during off peak time, with little overheads and while guaranteeing Quality of Service constraint

    Software defined networking: meeting carrier grade requirements

    Get PDF
    Software Defined Networking is a networking paradigm which allows network operators to manage networking elements using software running on an external server. This is accomplished by a split in the architecture between the forwarding element and the control element. Two technologies which allow this split for packet networks are ForCES and Openflow. We present energy efficiency and resilience aspects of carrier grade networks which can be met by Openflow. We implement flow restoration and run extensive experiments in an emulated carrier grade network. We show that Openflow can restore traffic quite fast, but its dependency on a centralized controller means that it will be hard to achieve 50 ms restoration in large networks serving many flows. In order to achieve 50 ms recovery, protection will be required in carrier grade networks

    Power consumption modeling in optical multilayer networks

    Get PDF
    The evaluation of and reduction in energy consumption of backbone telecommunication networks has been a popular subject of academic research for the last decade. A critical parameter in these studies is the power consumption of the individual network devices. It appears that across different studies, a wide range of power values for similar equipment is used. This is a result of the scattered and limited availability of power values for optical multilayer network equipment. We propose reference power consumption values for Internet protocol/multiprotocol label switching, Ethernet, optical transport networking and wavelength division multiplexing equipment. In addition we present a simplified analytical power consumption model that can be used for large networks where simulation is computationally expensive or unfeasible. For illustration and evaluation purpose, we apply both calculation approaches to a case study, which includes an optical bypass scenario. Our results show that the analytical model approximates the simulation result to over 90% or higher and that optical bypass potentially can save up to 50% of power over a non-bypass scenario
    corecore