1,330 research outputs found

    Low Power, Low Delay: Opportunistic Routing meets Duty Cycling

    Get PDF
    Traditionally, routing in wireless sensor networks consists of two steps: First, the routing protocol selects a next hop, and, second, the MAC protocol waits for the intended destination to wake up and receive the data. This design makes it difficult to adapt to link dynamics and introduces delays while waiting for the next hop to wake up. In this paper we introduce ORW, a practical opportunistic routing scheme for wireless sensor networks. In a dutycycled setting, packets are addressed to sets of potential receivers and forwarded by the neighbor that wakes up first and successfully receives the packet. This reduces delay and energy consumption by utilizing all neighbors as potential forwarders. Furthermore, this increases resilience to wireless link dynamics by exploiting spatial diversity. Our results show that ORW reduces radio duty-cycles on average by 50% (up to 90% on individual nodes) and delays by 30% to 90% when compared to the state of the art

    The Distributed Convergence Classifier Using the Finite Difference

    Get PDF
    The paper presents a novel distributed classifier of the convergence, which allows to detect the convergence/the divergence of a distributed converging algorithm. Since this classifier is supposed to be primarily applied in wireless sensor networks, its proposal makes provision for the character of these networks. The classifier is based on the mechanism of comparison of the forward finite differences from two consequent iterations. The convergence/the divergence is classifiable only in terms of the changes of the inner states of a particular node and therefore, no message redundancy is required for its proper functionality

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics

    P4CEP: Towards In-Network Complex Event Processing

    Full text link
    In-network computing using programmable networking hardware is a strong trend in networking that promises to reduce latency and consumption of server resources through offloading to network elements (programmable switches and smart NICs). In particular, the data plane programming language P4 together with powerful P4 networking hardware has spawned projects offloading services into the network, e.g., consensus services or caching services. In this paper, we present a novel case for in-network computing, namely, Complex Event Processing (CEP). CEP processes streams of basic events, e.g., stemming from networked sensors, into meaningful complex events. Traditionally, CEP processing has been performed on servers or overlay networks. However, we argue in this paper that CEP is a good candidate for in-network computing along the communication path avoiding detouring streams to distant servers to minimize communication latency while also exploiting processing capabilities of novel networking hardware. We show that it is feasible to express CEP operations in P4 and also present a tool to compile CEP operations, formulated in our P4CEP rule specification language, to P4 code. Moreover, we identify challenges and problems that we have encountered to show future research directions for implementing full-fledged in-network CEP systems.Comment: 6 pages. Author's versio

    Infective flooding in low-duty-cycle networks, properties and bounds

    Get PDF
    Flooding information is an important function in many networking applications. In some networks, as wireless sensor networks or some ad-hoc networks it is so essential as to dominate the performance of the entire system. Exploiting some recent results based on the distributed computation of the eigenvector centrality of nodes in the network graph and classical dynamic diffusion models on graphs, this paper derives a novel theoretical framework for efficient resource allocation to flood information in mesh networks with low duty-cycling without the need to build a distribution tree or any other distribution overlay. Furthermore, the method requires only local computations based on each node neighborhood. The model provides lower and upper stochastic bounds on the flooding delay averages on all possible sources with high probability. We show that the lower bound is very close to the theoretical optimum. A simulation-based implementation allows the study of specific topologies and graph models as well as scheduling heuristics and packet losses. Simulation experiments show that simple protocols based on our resource allocation strategy can easily achieve results that are very close to the theoretical minimum obtained building optimized overlays on the network

    SatCat5: A Low-Power, Mixed-Media Ethernet Network for Smallsats

    Get PDF
    In any satellite, internal bus and payload systems must exchange a variety of command, control, telemetry, and mission-data. In too many cases, the resulting network is an ad-hoc proliferation of complex, dissimilar protocols with incomplete system-to-system connectivity. While standards like CAN, MIL-STD-1553, and SpaceWire mitigate this problem, none can simultaneously solve the need for high throughput and low power consumption. We present a new solution that uses Ethernet framing and addressing to unify a mixed-media network. Low-speed nodes (0.1-10 Mbps) use simple interfaces such as SPI and UART to communicate with extremely low power and minimal complexity. High-speed nodes use so-called “media-independent” interfaces such as RMII, RGMII, and SGMII to communicate at rates up to 1000 Mbps and enable connection to traditional COTS network equipment. All are interconnected into a single smallsat-area-network using a Layer-2 network switch, with mixed-media support for all these interfaces on a single network. The result is fast, easy, and flexible communication between any two subsystems. SatCat5 is presented as a free and open-source reference implementation of this mixed-media network switch, with power consumption of 0.2-0.7W depending on network activity. Further discussion includes example protocols that can be used on such networks, leveraging IPv4 when suitable but also enabling full-featured communication without the need for a complex protocol stack

    An Overview on Wireless Sensor Networks Technology and Evolution

    Get PDF
    Wireless sensor networks (WSNs) enable new applications and require non-conventional paradigms for protocol design due to several constraints. Owing to the requirement for low device complexity together with low energy consumption (i.e., long network lifetime), a proper balance between communication and signal/data processing capabilities must be found. This motivates a huge effort in research activities, standardization process, and industrial investments on this field since the last decade. This survey paper aims at reporting an overview of WSNs technologies, main applications and standards, features in WSNs design, and evolutions. In particular, some peculiar applications, such as those based on environmental monitoring, are discussed and design strategies highlighted; a case study based on a real implementation is also reported. Trends and possible evolutions are traced. Emphasis is given to the IEEE 802.15.4 technology, which enables many applications of WSNs. Some example of performance characteristics of 802.15.4-based networks are shown and discussed as a function of the size of the WSN and the data type to be exchanged among nodes
    corecore